SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Audio-video Data Processing							
2.2 Course coordinator Lect. PhD. Sterca Adrian							
2.3 Seminar coordinator				Lect. PhD. Sterca Adr	ian		
2.4. Year of	3	2.5	6	2.6. Type of	C	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					15
Evaluations					
Other activities:					0
3.7 Total individual study hours		89			

3.7 Total individual study hours	89
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	 Computer Networks, Distributed Operating Systems, 				
		Databases, Data Structures and Algorithms, Object Oriented			
		Programming			
4.2. competencies	•	Strong knowledge in computer networks, very good knowledge			
	on data structures and algorithms, programming languages,				
		object-oriented programming.			

5. Conditions (if necessary)

5.1. for the course	Class room with a video projector device
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	te competencies acquired
Professional competencies	 Identification of concepts and models for computing systems and computer networks
Transversal competencies	 Applying rules for an organized and efficient work, responsible attitude towards the didactic-scientific field for creative valorification of one's own potential, complying to the principles and professional ethics norms Utilizing efficient methods and techniques for learning, knowing, research and development of knowledge valorification capacities, adapting to the requirements of a dynamic society and the communication in Romanian or an international language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Getting the student acquainted with concepts and technologies used in audio-video communication in analog networks, satellite or terrestrial, and most importantly in digital "best-effort" networks based on IP (e.g. the Internet). The course is meant to be on an intermediate-to-advanced level in the field of multimedia
7.2 Specific objective of the discipline	 Understanding audio-video codecs and digital audio-video formats, audio-video streaming fundamentals in the Internet (signaling and streaming protocols, rate/congestion control) and the basics of audio-video satellite broadcasting. Being able to perform digital sound processing (like applying sound filters or voice/speech recognition) and video processing (like edge detection and blurring in video frames, object recognition and tracking in videos) The course has also a strong applicative part meaning that students must implement specific applications/projects on the processing, transmission and playback of digital audio-video signal.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to multimedia. Analog representation	Exposure:description,	JPEG and JPEG2000
of audio and video signals. Digital representation of	explanation,examples,	compression standards
audio and video signals. The JPEG compression	discussion of case studies	are the most used
standard.		image compression
		standards in Internet
		and on digital cameras
		and capture devices
2. Audio-video formats (containers) and codecs.	Exposure:description,	
Basics of video encoding. The structure of a general	explanation,examples,	
video encoder/decoder. AV encoding standards. AV	discussion of case studies	

4 1 2 1	1	T
containers: .avi, .ogg, .mp4, .vob, .3gp, .mkv etc.		
3. Audio-video formats (containers) and codecs. The MPEG-1 and MPEG-2 standards.	Exposure:description, explanation,examples,	
WI LO-1 and WI LO-2 standards.	discussion of case studies	
4. Audio-video formats (containers) and codecs. The	Exposure:description,	H.264/MPEG-4 AVC
H.264/MPEG-4 AVC standard. H.264/MPEG-4 SVC	explanation, examples,	is one of the most
	discussion of case studies	commonly used
		formats for high
		definition video in
		Internet and satellite/terrestrial
		television networks
5. Multimedia streaming protocols. RTP and RTCP.	Exposure:description,	Explains how youtube,
Multimedia signaling protocols. RTSP, SDP, SIP.	explanation, examples,	vimeo, skype or google
Audio-video streaming over HTTP.	discussion of case studies	hangouts function
6. Congestion control algorithms for audio-video	Exposure:description,	
applications in best-effort networks. TCP AIMD,	explanation, examples,	
DCCP, TFRC and UTFRC	discussion of case studies	
7. Voice over IP. Speech coding. Voice and Speech	Exposure:description,	Explains the basic
recognition.	explanation, examples, discussion of case studies	technologies behind sound recognition
	discussion of case studies	software like Google
		Voice Search on
		Windows/Android and
		Siri and Shazzam on
		iOS
8. Audio-video communication in satellite networks.	Exposure:description,	
Basics of satellite communication and DBS (Direct Broadcast Satellite)	explanation, examples, discussion of case studies	
9. Audio-video communication in satellite networks.	Exposure:description,	Presents the protocols
Video broadcasting and DVB standards: DVB-S,	explanation, examples,	used by current TV
DVB-T and DVB-C	discussion of case studies	content providers.
10. Audio-video libraries and applications. FFMPEG,	Exposure:description,	FFMPEG and
VideoLan, OpenCV	explanation, examples,	VideoLan are the most
	discussion of case studies	used free, open-source
		libraries for audio- video
		encoding/decoding and
		processing and
		OpenCV is a powerful
		library used in
		computer vision
		(object recognition in
11 Multimodia OoS in Intermet DOD .: 1	Even course de conice d'este	video)
11. Multimedia QoS in Internet. P2P video streaming and Internet Television.	Exposure:description, explanation,examples,	
and internet relevision.	discussion of case studies	
12. Object recognition in video.	Exposure:description,	The basic techniques
	explanation, examples,	for object recognition
	discussion of case studies	and tracking in videos
Ribliography		

Bibliography

- 1.Al Bovik, The Essential Guide to Video Processing, Academic Press, Elsevier, 2009.
- 2.L. Hanzo, P. Cherriman, J. Streit, Video Compression and Communications. From Basics to H.261, H.263, H.264, MPEG4 for DVB and HSDPA-Style Adaptive Turbo-Transceivers, Wiley & IEEE Press, 2007.
- 3.A. Sterca, Congestion Control for Streaming Protocols, PhD Thesis, 2008.

- 4. Iain Richardson, Video Codec Design, Wiley, 2002.
- 5. Iain Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.
- 6. Colin Perkins, RTP Audio and Video for the Internet, Addison-Wesley, 2003.
- 7. Tokunbo Ogunfunmi, Madihally Narasimha, Principles of Speech Coding, CRC Press, 2010
- 8. Frank Y. Shih, Image Processing and Pattern Recognition: Fundamentals and Techniques, Wiley-IEEE Press, 2010.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Presentation of project themes. Students must	Dialogue, debate, case	The laboratory is
choose a project theme and must develop that project	studies, examples	structured as 2 hours
by the end of the semester. Examples of project		classes, one lab every
themes for the current year are at		two weeks
http://www.cs.ubbcluj.ro/~forest/cav/projects.html		
2. Image processing. JPEG encoder in java.	Dialogue, debate, case	
Simple examples (in C/C++) using the SDL library	studies, examples	
(displaying a BMP/YUV image on a SDL surface)		
, 1 , 2		
3. Getting acquainted with the FFMPEG library. A	Dialogue, debate, case	
simple audio-video player based on FFMPEG and	studies, examples	
SDL (written in C); synchronizing audio with video,		
saving frames as images. Youtube downloader using		
FFMPEG.		
4. Sound processing in Java and C. Creating digital	Dialogue, debate, case	
effects for an electric-acoustic guitar (delay,	studies, examples	
distortion, chorus, echo etc.) – demonstration using a		
Yamaha FX370C electro-acoustic guitar.		
5. Getting input from a digital camera, internal or	Dialogue, debate, case	
using a video capture device (TV tuner), in java	studies, examples	
and C/++; demonstration using a Sony HDR-TD10		
Full HD 3D video camera and an internal Acer		
notebook camera. 3D movie rendering on a regular		
LCD display using anaglyph glasses – demo.		
Object Recognition in videos - simple applications in		
C/C++ using the OpenCV library.		
6. Public presentation of student projects.	Dialogue, case studies	

Bibliography

- 1. The FFMPEG code
- 2. The VideoLan VLC code
- 3. Al Bovik, The Essential Guide to Video Processing, Academic Press, Elsevier, 2009.
- 4. Iain Richardson, Video Codec Design, Wiley, 2002.
- 5. David Salomon, Data Compression: The Complete Reference, Springer, 3rd edition, 2004.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying programs of all major universities in Romania and abroad;
- The content of the course is considered by software companies as important for average programming skills

10. Evaluation

-				
Type of	of activity	10.1 Evaluation	10.2 Evaluation methods	10.3 Share in

	criteria		the grade
10.4 Course	Knowing the theoretical issues discussed during the course. Being able to design and understand a multimedia streaming system.	During the semester, students will have to implement a medium-complexity software project from the multimedia (audio-video) field based on the FFMPEG library. E.g.: audio-video player enhanced with several output filters and surfaces, simple audio or video codec, video surveillance system etc. For a list of potential project ideas for	100 %
10.5 Seminar/lab activities	Applying the knowledge received from the course, the ability to implement from scratch a multimedia system (without any help	this year see: http://www.cs.ubbcluj.ro/~forest/cav/projects.html As an alternative, the final grade can also be obtained by taking a written exam (without	<u>ml</u>
	from a multimedia framework, using only operating system's drivers and tools).	developing a semester project), but in this case, the maximum obtainable final grade is 7.	

10.6 Minimum performance standards
In order to successfully pass this class, students must get at least 5 at either the project presentation (preferable) or at the written exam.

The course requirements are described at: http://www.cs.ubbcluj.ro/~forest/cav

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect.PhD. Adrian Sterca	Lect.PhD. Adrian Sterca
Date of approval	Signature of the head of department	
	Prof. PhD. Bazil Parv	