SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Software Component Models							
2.2 Course coordinator PhD Lecturer Andreea Vescan							
2.3 Seminar co	2.3 Seminar coordinator PhD Lecturer Andreea Vescan						
2.4. Year of	3	2.5	5	2.6. Type of	C	2.7 Type of	optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					70
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					18
Tutorship				3	
Evaluations				5	
Other activities:				0	
2.5.T 1: 1: 1 1 . 1 1		100			·

3.7 Total individual study hours	108
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

1			
4.1. curriculum	 Advanced Programming Methods 		
	Object-Oriented Programming		
4.2. competencies	Average programming skills in various high level programming		
	Languages (.NET, Java environment and others)		

5. Conditions (if necessary)

5.1. for the course	Video projector, Classroom with network and Internet access and to
	laboratory

	equipment.
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET and Java and others),

6. Specific competencies acquired

		Identification of proper methodologies for software systems development;
T T	es	
on	nci	 Identification and explication of proper software systems specification methods;
essi	ete	 Using methodologies and tools for development of informatics applications;
rof	competencies	 Using proper criteria and methods for evaluation of software applications;
P	2	Realization of dedicated information projects.
		• Application of efficient and rigorous working rules, manifest responsible attitudes toward the
[E	cies	scientific and didactic fields, respecting the professional and ethical principles.
ers	ten	• Use of efficient methods and techniques for learning, information, research and development
nsv	ıbeı	of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for
Transversa]	competencies	communication in Romanian as well as in a widely used foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 know and understand fundamental concepts of Component-based Software Development; to develop skills in modeling component-based systems systems for various component models;
7.2 Specific objective of the discipline	 will acquire theoretical aspects regarding various component models; will know similarities and differences between component models. will know how to model a component-based system using a specific component model.

8. Content

8.1 Course	Teaching methods	Remarks
Lecture 1.	• Interactive exposure	
1. Basic concepts (components,	Explanation	
composition, component models)	 Conversation 	
	• Didactical	
	demonstration	
Lecture 2.	Interactive exposure	
2. The CBD process (component life cycle,	 Explanation 	
system life cycle)	Conversation	
	• Didactical	
	demonstration	
Lecture 3.	 Interactive exposure 	
3. The Semantics of Software Components	Explanation	
4. The Syntax of Software Components	 Conversation 	
	Didactical	
	demonstration	
Lecture 4	 Interactive exposure 	
5. The Composition of Software Components	 Explanation 	
5.1. An Idealized Component Life Cycle	Conversation	
5.2. Composition in the Design Phase		

	, , , , , , , , , , , , , , , , , , ,
5.3. Composition in the Deployment Phase	Didactical demonstration
Lecture 5, 6 6. Software Component Models 6.1. Category 1: Design without Repository - This category includes all simple Acmelike ADLs, UML2.0,PECOS, and Fractal. 6.2. Category 2: Design with Deposit-Only Repository - This category includes EJB, COM, .NET, CCM, and Web Services. The representative example is EJB. 6.3. Category 3: Deployment without Repository - This category contains only JavaBeans. 6.4. Category 4: Design with Repository - This category includes Koala, SOFA, and KobrA	 Interactive exposure Explanation Conversation Didactical demonstration
KobrA. Lecture 7	Interactive exposure
7. A taxonomy 7.1. Categories Based on ComponentSemantics Based on semantics, current component models can be grouped into three categories: 1) component models in which components are classes, 2) models in which components are objects, and 3) those in which components are architectural units 7.2. Categories Based on Component Syntax Based on component syntax, current models fall into three categories: 1) models in which components are defined by object-oriented programming languages, 2) those in which an IDL is used and in which components can be defined in programming languages with mappings from the IDL, and 3) those in which components are defined by ADLs 7.3. A Taxonomy Based on Composition	 Interactive exposure Explanation Conversation Didactical demonstration
Lecture 8 8. Survey of current component models	Interactive exposure Explanation
8.1. categories based on components 8.2 categories based on composition mechanisms	ExplanationConversationDidactical demonstration
Lecture 9,10 9. Component models based on objects 9.1. Objects as components 9.2. Method call as a composition mechanism 9.3. Enterprise JavaBeans, JavaBeans	 Interactive exposure Explanation Conversation Didactical demonstration
Lecture 11,12 10. Component models based on architectural units 10.1. Architectural units as components 10.2 Port connection as a composition mechanism 10.3. Acme/ArchJava, UML 2.0	 Interactive exposure Explanation Conversation Didactical demonstration
Lecture 13,14 11. Component models based on encapsulated components	Interactive exposureExplanationConversation

11.1. Encapsulated components 11.2. Coordination as a composition mechanism 11.3. Web services, X-MAN	Didactical demonstration	
---	--------------------------	--

Bibliography

- [1] K.-K. Lau, Z. Wang, *Software Component Models*, IEEE Trans. on Software Engineering, V 33, n. 10, pp. 709-724, 2007.
- [2] Szyperski, C.: Component Software. Beyond Object-Oriented Programming, Addison-Wesley (1st ed. 1998, 2nd ed. 2002).
- [3] Crnkovic, I., Larsson, M., *Building Reliable Component-Based Software Systems*, Artech House Publisher, ISBN 1-58053-327-2, 2002
- [4] Heineman, G.T, Councill, W.T., Component-based software engineering: putting the pieces together, Addison-Wesley, 2001.

Optional references

Internet resources and conferences

8.2 Seminar / laboratory	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every second
		week.
		The attendance at
		seminars is 75%
		compulsory (5 of 7).
Theme 1 (lab 1-2, weeks 1-4)	Presentation,	• • • • • • • • • • • • • • • • • • • •
The first two labs are dedicated to surveying information	Conversation,	
sources available on Internet and Intranet. In the lab 2	Problematizations,	
the student must communicate the project title. Live	Discovery, Individual	
demos are scheduled in the last week.	study, Exercises	
Theme 2 (lab 3-4, weeks 5-8)	Presentation,	
Project design –choose a component model	Conversation,	
J C 1	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Theme 3 (lab 5-6, weeks 9-12)	Presentation,	
Project implementation and presentation.	Conversation,	
u i	Problematizations,	
	Discovery, Individual	
	study, Exercises	

Bibliography

• Students will search and use component model tools suitable for their Project Activity.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

http://www.cs.manchester.ac.uk/study/undergraduate/courses/courseunitsyllabus/?courseunitcode = COMP61521

http://www.idt.mdh.se/kurser/cd5490/

• Course content is considered very important by the software companies for improving advance component-based systems modeling skills.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	The correctness and completeness of the accumulated knowledge of component models.	Written exam	50%
10.5 Seminar/lab activities	Class attendance	2 unmotivated absences are accepted, but each unmotivated absence other than those specified above are penalized.	10%
	Project specification	Evaluation of the project - specification documentation	10%
	Project development	Evaluation of the project - used component model	20%
10 () ()	Project presentation	Evaluation of the project - running the developed application	10%

10.6 Minimum performance standards

- Each student has to prove that:
 - o (s)he acquired an acceptable level of knowledge and understanding of the current component models;
 - o (s)he has the ability to establish certain connections and to use the knowledge in solving different problems with various component models.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date Signature of course coordinator Signature of seminar coordinator

29.04.2015 Lect. PhD. Andreea Vescan

Date of approval Signature of the head of department

Prof. PhD. Bazil Pârv