
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babes Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline Software engineering

2.2 Course coordinator conf. dr. Dan CHIOREAN

2.3 Seminar coordinator asist. drd. Dragos PETRASCU

2.4. Year of

study

2 2.5

Semester

4 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 4 Of which: 3.2 course 2 3.3

seminar/laboratory

1S +

1L

3.4 Total hours in the curriculum 56 Of which: 3.5 course 28 3.6

seminar/laboratory

1/1

Time allotment: hours

Learning using manual, course support, bibliography, course notes 27

Additional documentation (in libraries, on electronic platforms, field documentation) 14

Preparation for seminars/labs, homework, papers, portfolios and essays 23

Tutorship 10

Evaluations 20

Other activities:

3.7 Total individual study hours 94

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum Object-Oriented Programming

4.2. competencies Average programming skills in a high level object-oriented

programming language

5. Conditions (if necessary)

5.1. for the course beamer

5.2. for the seminar /lab

activities

 Laboratory with computers; high level programming language

environment (Java environments or .NET and a UML CASE tool)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es
 C2.1 & C2.2 - Knowledge on modeling, software development metodologies, software

testing, project management

 C2.3 - Ability to work independently and in a team in order to develop software complying

with industrial standards.

 C2.5 - Understanding the role of different artifacts used in the process of software

development and acquiring the ability of realizing and using these artifacts

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es
 CT1 - Ability to create different models (analysis, design, implementation, testing) using the

UML

 CT2 - Ability to create software beginning with model construction, continuing with model

verification and model transformation in code, realizing and using testing models

 CT3 - Ability to use a software methodology to produce quality software from analyzing

software requirements to code generation and software testing

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to Software Engineering Exposure: description,

explanation, examples,

discussion of case

studies

2. Using UML to specify models Exposure: description,

explanation, examples,

discussion of case

studies

3. Requirements Elicitation Exposure: description,

explanation, examples,

discussion of case

studies

4. Analysis Exposure: description,

explanation, examples,

discussion of case

studies

5. System Design - Decomposing the System Exposure: description,

explanation, examples,

discussion of case

studies

6. System Design - Addressing Design Goals Exposure: description,

explanation, examples,

discussion of case

7.1 General objective of the

discipline

 Be able to understand software production life cycle

 Improved skills on developing software

7.2 Specific objective of the

discipline

 Understand and work with the concepts of: model, model properties.

Understanding the role of abstraction in producing models.

 Understand the differences between modeling languages and modeling

methodologies.

 Understand and work with the most important UML concepts used in

constructing software models

studies

7. Object Design - Reusing Pattern Solutions Exposure: description,

explanation, examples,

discussion of case

studies

8. Object Design - Specifying Interfaces Exposure: description,

explanation, examples,

discussion of case

studies

9. Mapping Models to Code Exposure: description,

explanation, examples,

discussion of case

studies

10. Testing Exposure: description,

explanation, examples,

discussion of case

studies

11. Rationale & Configuration Management Exposure: description,

explanation, examples,

discussion of case

studies

12. Project Management Exposure: description,

explanation, examples,

discussion of case

studies

13. Software Life Cycle Exposure: description,

explanation, examples,

discussion of case

studies

14. Methodologies Exposure: description,

explanation, examples,

discussion of case

studies

Bibliography
1. Bernd Bruegge, Allen Dutoit - Object-Oriented Software Engineering Using UML, Patterns and

Java - 3rd Edition - Prentice Hall 2009
2. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides - Design Patterns - Addison-Wesley,

1996
3. Ian Sommerville - Software Engineering - 8th edition - Addison-Wesley, 2006
4. Grady Booch, James Rumbaugh, Ivar Jacobson - The Unified Modeling Language User Guide,

V.2.0 - Addison Wesley, 2005
5. Martin Fowler et al. - Refactoring - Improving the Design of Existing Code - Addison Wesley,

1999
8.2 Seminar Teaching methods Remarks

1. Use cases diagrams, concepts, relationships,

representation, the structure of a use case

description document

Explanation, Dialogue,

debate, case studies,

examples, proofs

The seminar is

structured as 2 hours

classes at each two

weeks period

2. Describing structural models using class

diagrams - concepts, relationships,

representation, filtering the information

Explanation, Dialogue,

debate, case studies,

examples, proofs

3. Describing behavioral models using sequence

and collaboration diagrams - the concepts used

in these diagrams, the equivalence of these

diagrams

Explanation, Dialogue,

debate, case studies,

examples, proofs

4. Describing behavioral models using state

transition diagrams. Generating code from

state class diagrams

Explanation, Dialogue,

debate, case studies,

examples, proofs

5. Using assertions to specify model correctness

against different kind of rules. Code

generation for UML models

Explanation, Dialogue,

debate, case studies,

examples, proofs

6. The role of pre-post-conditions in specifying

component's interface - design by contract

Explanation, Dialogue,

debate, case studies,

examples, proofs

7. Testing patterns Explanation, Dialogue,

debate, case studies,

examples, proofs

Bibliography
1. Martin Fowler - UML Distilled - Addison-Wesley, 2003
2. Bruce Eckel - Thinking in Java 4th edition - Prentice Hall, 2006
3. Kent Beck - Test Driven Development - Addison-Wesley, 2002

8.2 Laboratory Teaching methods Remarks

1. Agile Software Methodologies - planning the

software development phases. Risk analysis in

software development, the role of incremental

and iterative development. Analysis of small

software applications that each student has to

analyse, design, implement and test.

Explanation, dialogue,

case studies

The laboratory is

structured as 2 hours

classes at each two

weeks period

2. Using an UML CASE tool and text editors to

realize the functional model of each individual

problem

Explanation, dialogue,

case studies

3. Using an UML CASE tool to construct The

requirement model of each individual problem

Explanation, dialogue,

case studies

4. Constructing the Design model using an UML

CASE tool

Explanation, dialogue,

case studies

5. Realizing the Implementation model using

both an UML CASE tool and an appropriate

IDE

Testing data discussion,

evaluation

6. Testing the application realized Testing data discussion,

evaluation

7. Realizing the User manual and delivering the

application

Explanation, dialogue,

case studies

Bibliography

1. Kenneth S. Rubin - Essential Scrum - A Practical Guide to the Most Popular Agile Process -

Addison-Wesley 2012

2. Philippe B. Kruchten - The Rational Unified Process: An Introduction - 3rd Edition Addison -

Wesley 2003

3. Per Kroll, Philippe Kruchten and Grady Booch - The Rational Unified Process Made Easy: A

Practitioner's Guide to the RUP - Addison-Wesley 2003

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The course respects the IEEE and ACM Curricula Recommendations for Computer Science Studies;

 The course exists in the studying program of all major universities in Romania and abroad;

 The content of the course contains knowledge mandatory for any IT specialist working in a software

company

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course - know the basic concepts

& SE principles;

- knowledge of UML key

concepts

- knowledge of modeling

methodologies

Written exam

60%

10.5 Seminar/lab activities - be able to implement

acknowledged knowledge

in producing software

- be able to produce and

use modeling artifacts

- Practical examination

- documentation

-continuous observations

40%

Date Signature of course coordinator Signature of seminar coordinator

1 May 2015 conf. dr. Dan CHIOREAN asist. drd. Dragos PETRASCU

Date of approval Signature of the head of department

 prof. dr. Bazil PÂRV

