1.1 Higher education	Babes Bolyai University		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computer Science		
1.5 Study cycle	Bachelor		
1.6 Study programme /	Computer Science		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disciplineSoftware engineering							
2.2 Course coordinator conf. dr. Dan CHIOREAN							
2.3 Seminar coo	2.3 Seminar coordinator asist. drd. Dragos PETRASCU						
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1S +
				seminar/laboratory	1L
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	1/1
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					27
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays 23					23
Tutorship					10
Evaluations					20
Other activities:					
3.7 Total individual study hours 94					

5.7 Total marriadal stady nodis	
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•	Object-Oriented Programming	
4.2. competencies	•	Average programming skills in a high level object-oriented	
		programming language	

5. Conditions (if necessary)

5.1. for the course	٠	beamer
5.2. for the seminar /lab	•	Laboratory with computers; high level programming language
activities		environment (Java environments or .NET and a UML CASE tool)

6. Specific competencies acquired

nal icies	es	• C2.1 & C2.2 - Knowledge on modeling, software development metodologies, softw	are
	ıcie	testing, project management	
sio	ten	• C2.3 - Ability to work independently and in a team in order to develop software comply.	ing
fes	be	with industrial standards.	-
Pro	om	• C2.5 - Understanding the role of different artifacts used in the process of softw	are
ΗJ		development and acquiring the ability of realizing and using these artifacts	
		• CT1 - Ability to create different models (analysis, design, implementation, testing) using the	е
ll les		UML	
rsa	• CT2 - Ability to create software beginning with model construction, continuing with model		
SVe	ete	verification and model transformation in code, realizing and using testing models	
an	dw	• CT3 - Ability to use a software methodology to produce quality software from analyzing	
Ľ	[0]	software requirements to code generation and software testing	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand software production life cycle Improved skills on developing software
7.2 Specific objective of the discipline	 Understand and work with the concepts of: model, model properties. Understanding the role of abstraction in producing models. Understand the differences between modeling languages and modeling methodologies. Understand and work with the most important UML concepts used in constructing software models

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Software Engineering	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
2. Using UML to specify models	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
3. Requirements Elicitation	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
4. Analysis	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
5. System Design - Decomposing the System	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
6. System Design - Addressing Design Goals	Exposure: description,	
	explanation, examples,	
	discussion of case	

	studies	
7. Object Design - Reusing Pattern Solutions	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
8. Object Design - Specifying Interfaces	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
9. Mapping Models to Code	Exposure: description,	
	discussion of ease	
	anscussion of case	
10 Testing	Exposure: description	
10. Testing	explanation examples	
	discussion of case	
	studies	
11 Rationale & Configuration Management	Exposure: description	
11. Rationale & Configuration Management	explanation examples	
	discussion of case	
	studies	
12. Project Management	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
13. Software Life Cycle	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
14. Methodologies	Exposure: description,	
	explanation, examples,	
	discussion of case	
	studies	
Bibliography		in a UML Dattance and
1. Bernu Bruegge, Allen Dutoit - Object-Oriented	Software Engineering US	ing OML, Patterns and
Java - STU EUIUOII - PTEIIUCE Пан 2009 2 Frich Camma Dichard Holm Dalph Johnson I	ohn Vliccidoc – Docian Pot	torne Addison Woslow
	onn viissiues - Design rat	terns - Autison-westey,
3 Jan Sommerville - Software Engineering - 8th	edition - Addison-Wesley	2006
4 Grady Booch James Rumbaugh Jyar Jacobson	- The Unified Modeling L	anguage User Guide
V 2 0 - Addison Wesley 2005	The online modeling L	anguage over dulae,
5. Martin Fowler et al Refactoring - Improving	the Design of Existing Coo	de - Addison Wesley.
1999	the Design of Existing do	ac maaison westey,
8.2 Seminar	Teaching methods	Remarks
1. Use cases diagrams, concepts, relationships,	Explanation, Dialogue,	The seminar is
representation, the structure of a use case	debate, case studies,	structured as 2 hours
description document	examples, proofs	classes at each two
		weeks period
2. Describing structural models using class	Explanation, Dialogue,	_
diagrams - concepts, relationships,	debate, case studies,	
representation, filtering the information	examples, proofs	
3. Describing behavioral models using sequence	Explanation, Dialogue,	
and collaboration diagrams - the concepts used	debate, case studies,	
in these diagrams, the equivalence of these	examples, proofs	

diagrams

4.	Describing behavioral models using state	Explanation, Dialogue,	
	transition diagrams. Generating code from	debate, case studies,	
	state class diagrams	examples, proofs	
5.	Using assertions to specify model correctness	Explanation, Dialogue,	
	against different kind of rules. Code	debate, case studies,	
	generation for UML models	examples, proofs	
6.	The role of pre-post-conditions in specifying	Explanation, Dialogue,	
	component's interface - design by contract	debate, case studies,	
		examples, proofs	
7.	Testing patterns	Explanation, Dialogue,	
		debate, case studies,	
		examples, proofs	
Biblio	graphy		
1.	Martin Fowler - UML Distilled - Addison-Wesl	ey, 2003	
2.	Bruce Eckel - Thinking in Java 4th edition - Pro	entice Hall, 2006	
3.	Kent Beck - Test Driven Development - Addisc	on-Wesley, 2002	
8.2 La	boratory	Teaching methods	Remarks
1.	Agile Software Methodologies - planning the	Explanation, dialogue,	The laboratory is
	software development phases. Risk analysis in	case studies	structured as 2 hours
	software development, the role of incremental		classes at each two
	and iterative development. Analysis of small		weeks period
	software applications that each student has to		-
	analyse, design, implement and test.		
2.	Using an UML CASE tool and text editors to	Explanation, dialogue,	
	realize the functional model of each individual	case studies	
	problem		
3.	Using an UML CASE tool to construct The	Explanation, dialogue,	
	requirement model of each individual problem	case studies	
4.	Constructing the Design model using an UML	Explanation, dialogue,	
	CASE tool	case studies	
5.	Realizing the Implementation model using	Testing data discussion,	
	both an UML CASE tool and an appropriate	evaluation	
	IDE		
6.	Testing the application realized	Testing data discussion,	
		evaluation	
7.	Realizing the User manual and delivering the	Explanation, dialogue,	
	application	case studies	
Biblio	graphy	1	

1. Kenneth S. Rubin - Essential Scrum - A Practical Guide to the Most Popular Agile Process -Addison-Wesley 2012

2. Philippe B. Kruchten - The Rational Unified Process: An Introduction - 3rd Edition Addison -Wesley 2003

3. Per Kroll, Philippe Kruchten and Grady Booch - The Rational Unified Process Made Easy: A Practitioner's Guide to the RUP - Addison-Wesley 2003

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science Studies; ٠
- The course exists in the studying program of all major universities in Romania and abroad; •
- The content of the course contains knowledge mandatory for any IT specialist working in a software • company

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	- know the basic concepts	Written exam	60%
	& SE principles;		
	- knowledge of UML key		
	concepts		
	- knowledge of modeling		
	methodologies		
10.5 Seminar/lab activities	- be able to implement	- Practical examination	40%
	acknowledged knowledge	- documentation	
	in producing software	-continuous observations	
	- be able to produce and		
	use modeling artifacts		

Date	Signature of course coordinator	Signature of seminar coordinator
1 May 2015	conf. dr. Dan CHIOREAN	asist. drd. Dragos PETRASCU

Date of approval

Signature of the head of department

prof. dr. Bazil PÂRV