SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Da				ıtabases			
2.2 Course coordinator				Lect. PhD Dan Mircea Suciu			
2.3 Seminar coordinator				Lect. PhD Dan Mircea Suciu			
2.4. Year of	2	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1/2
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	14/21
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					29
Tutorship					5
Evaluations					20
Other activities:				-	
27 T + 1' 1' 1 1 + 1 1					

3.7 Total individual study hours	84
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Laboratory with computers with MS SQL Server (minimum 2005)
activities	installed.

6. Specific competencies acquired

ssional	competencies	C 5.1 Identification of basic concepts for database organization C 5.2 Identification and explanation of basic models for data management in databases C 5.3 Usage of methods and methodologies for database design of specific projects
		CT1 - Apply rules to: organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
Transversal	competencies	CT3 - Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To get acquainted with the general concepts regarding the data bases. To get acquainted with the data models, especially the relational model.
7.2 Specific objective of the discipline	 To be able to create and modify databases in MS SQLServer Ability to manage databases in .Net

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Databases	Interactive exposure	
	Explanation	
	• Conversation	
	Didactical	
	demonstration	
2. Relational Databases	• Interactive exposure	
	• Explanation	
	 Conversation 	
	Didactical	
	demonstration	
3. SQL Queries	Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
4. Relational Algebra	Interactive exposure	
	Explanation	
	 Conversation 	
	Didactical	
	demonstration	
5. Schema Refinement	Interactive exposure	
	• Explanation	
	• Conversation	
	Didactical	
	demonstration	

(N1E	
6. Normal Forms	• Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
7. Entity-Relational Model	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
8. Database design	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
9. Physical structure of DBs	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
10. Indexes	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
11. Trees	Interactive exposure
	• Explanation
	• Conversation
	Didactical
	demonstration
12. Hash-Files	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
13. Object-Oriented Databases	Interactive exposure
	• Conversation
14. Object-Relational Databases	Interactive exposure
3	• Conversation

Bibliography

- 1. AHO, A., HOPCROFT, J., ULLMAN, J., Data Structures and Algorithms. Addison-Wesley, Reading, Massachusetts, 1983.
- 2. BÂSCA, O., Baze de date. Editura All, Bucuresti 1997.
- 3. DATE, C.J., An Introduction to Data Base Systems. Addison Wesley, Reading, MA, 2004.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. CRUD statements in SQL	Dialogue, debate, case	The seminar is
	studies, examples, proofs	structured as 2 hours
		classes every second
		week
2. Data Definition specific statements in SQL	Dialogue, debate, case	
	studies, examples, proofs	
3. ADO.NET library	Dialogue, debate, case	

	studies, examples, proofs
4. Design databases.	Dialogue, debate, case
	studies, examples, proofs
5. Normal forms in practice	Dialogue, debate, case
	studies, examples, proofs
6. Advance clauses in SELECT statements	Dialogue, debate, case
	studies, examples, proofs
7. SQL optimization	Dialogue, debate, case
	studies, examples, proofs
	•
	•

Bibliography

- 1. KORTH, H.F., SILBERSCHATZ, A., Data Base System Concepts. McGraw-Hill Book Compagny, 1986.
- 2. LIVIU NEGRESCU, LAVINIA NEGRESCU, Limbajul C# pentru incepatori. Editura Albastra, Cluj-Napoca 2011.
- 3. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 1998.

8.3 Laboratory	Teaching methods	Remarks
1. + 2. Create a database in MS SQL Server with at	Explanation,	
least 10 tables, and fill 5 of its tables with at least 10	dialogue, case studies	
relevant records		
3. +4. + 5. Design and develop a .NET application	Explanation,	
which maintains the content of a table	dialogue, case studies	
6.+7.+8. High level operations developed in C# for	Explanation,	
maintaining an n-to-m relationship between two	dialogue, case studies	
tables.		
9.+10.+11. Develop 10 complex SQL queries	Explanation,	
according with some specific criteria.	dialogue, case studies	
12. +13.+14. SQL queries optimization	Testing data	
	discussion, evaluation	

Bibliography

- 1. KORTH, H.F., SILBERSCHATZ, A., Data Base System Concepts. McGraw-Hill Book Compagny, 1986.
- 2. LIVIU NEGRESCU, LAVINIA NEGRESCU, Limbajul C# pentru incepatori. Editura Albastra, Cluj-Napoca 2011.
- 3. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 1998.
- 4. T. THEMSTROM, A. WEBBER, M. HOTEK, MS SQL Server 2008 Database Development, Self Paced Training Kit 2009

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course structure is according with the IEEE and ACM Recommendations for Computer Science studies;
- The course is part of the studying program of all major universities in Romania and abroad;
- The content of the course is considered by the software companies as mandatory knowledge for a software developer

10. Evaluation

Type of activity	Evaluation criteria	Evaluation methods	Share in the grade (%)
Course	- know the basic	Written exam	50%

	principle of the domain; - apply the course concepts - problem solving		
Seminar/lab activities	- be able to create and maintenance a database - apply the course concepts to develop simple to complex SQL queries	Practical examinationContinuous observations	50%
Minimum performance standards			

The final grade (average between written exam and laboratory work) should be at least grade 5 (from a scale of 1 to 10)

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. PhD. Dan Mircea Suciu	Lect. PhD. Dan Mircea Suciu

Signature of the head of department Date of approval