SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Probability Theory and Statistics							
2.2 Course coordinator Lect. Prof. PhD. Sanda Micula							
2.3 Seminar coordinator				Lect. Prof. PhD. Sanda Micula			
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	2 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					7
Evaluations					20
Other activities:					-

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis	
	 Algebra 	
4.2. competencies	Logical thinking	
	 Average logical programming skills 	

5. Conditions (if necessary)

5.1. for the course	 Lecture room with large blackboard and video projector
5.2. for the seminar /lab	 For seminar: room with large blackboard

activities	For lab: Laboratory with computers having Matlab installed
------------	--

6. Specific competencies acquired

Professional competencies '	C4.1 Defining basic concepts, theory and mathematical models C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving real-life problems
Prof	C4.5 Embedding formal models in applications from various areas
	CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic
Transversal competencies	CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire basic knowledge of Probability Theory and Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various probabilistic and statistical models Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
1. Experiments, events, field of events, operations with events. Axiomatic definition of probability. Poincaré's formula. Classical definition of probability.	Interactive exposureExplanationConversationDidactical demonstration	
2. Geometric probability. Buffon's needle problem. Conditional probability. Independent events. Total probability formula, Bayes' formula. Classical probabilistic models (binomial, multinomial, hypergeometric, Poisson, Pascal, geometric).	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. Random variables and random vectors. Discrete random variables. Probability distribution function. Cumulative distribution function. Properties, examples.	Interactive exposureExplanationConversationDidactical demonstration	
4. Discrete probability laws (Bernoulli, binomial, hypergeometric, Poisson, Pascal, geometric). Discrete random vectors. Operations with discrete random variables.	Interactive exposureExplanationConversationDidactical demonstration	
5. Continuous random variables. Probability density function. Continuous probability laws	Interactive exposureExplanation	

(uniform, normal, Gamma, exponential, Chi-	Conversation	
squared, Beta, Student, Cauchy, Fisher).	Didactical demonstration	
Independent random variables. Functions of		
continuous random variables. 6. Numerical characteristics of random variables.	- Interactive expenses	
Expectation. Variance. Moments (initial,	Interactive exposureExplanation	
central, absolute). Covariance and correlation	Conversation	
coefficient. Quantile, median, quartiles.	Didactical demonstration	
Inequalities (Hölder, Schwartz, Cauchy-		
Buniakovski, Minkowsky, Markov,		
Chebyshev).	Lutara ativa avva a sura	
7. Sequences of random variables. Convergence of sequences of random variables. Laws of	Interactive exposureExplanation	
large numbers. Limit theorems.	Conversation	
	Didactical demonstration	
8. Descriptive statistics. Data collection.	Interactive exposure	Video projector
Graphical display of data. Frequency	• Explanation	presentation
distribution and histograms. Parameters of a	Conversation	
statistical distribution. Measures of central	 Didactical demonstration 	
tendency. Measures of variation. Correlation and regression. Linear regression.		
9. Sample theory. Samples. Sample functions	Interactive exposure	
(sample mean, sample variance, sample	• Explanation	
moments). Estimation theory. Unbiased	• Conversation	
estimators. Confidence intervals for	Didactical demonstration	
estimating the population mean and the		
population variance. Confidence intervals for comparing two population means and two		
population variances.		
10. Estimation theory. Properties of point	Interactive exposure	
estimators. Sufficient statistics. Likelihood	• Explanation	
function. The Rao-Blackwell theorem and	 Conversation 	
minimum variance estimators. Fisher's	 Didactical demonstration 	
information. Absolutely correct estimators. Methods of estimation. The method of		
moments estimator, the method of maximum		
likelihood estimator.		
11. Hypothesis testing. Rejection region. Type I	Interactive exposure	
errors. Significance testing and P-values. The	• Explanation	
Z-test and T (Student)-test for the mean. Examples.	• Conversation	
	Didactical demonstration	
12. The Chi-square-test for variance. The F-test for the ratio of variances. Tests for the	Interactive exposure Explanation	
difference of means. Examples. Robust tests.	ExplanationConversation	
	Didactical demonstration	
13. Type II errors and the power of a test. Most	Interactive exposure	
powerful tests and the Neyman-Pearson	• Explanation	
lemma. Uniformly most powerful tests.	• Conversation	
Examples.	Didactical demonstration	
14. The Chi-square-test for several	Interactive exposure	
characteristics. The Chi-square-test for	 Explanation 	
contingency tables.	• Conversation	
Diblic coords	Didactical demonstration	
Bibliography		

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Agratini, O., Blaga, P., Coman, Gh., Lectures on Wavelets, Numerical Methods and Statistics, Casa Cartii de Stiinta, Cluj-Napoca, 2005.
- 3. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 4. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 5. Blaga, P., Radulescu, M., Calculul probabilitatilor, Universitatea "Babes-Bolyai" Cluj-Napoca, 1987.
- 6. Feller, W., An introduction to probability theory and its applications, Vol.I-II, John Wiley, New York, 1957, 1966.
- 7. Iosifescu, M., Mihoc, Gh., Theodorescu, R., Teoria probabilitatilor si statistica matematica, Editura Tehnica, Bucuresti, 1966.
- 8. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

8.2 Seminar	Teaching methods	Remarks
Euler's Gamma and Beta functions. Properties.	Interactive exposureExplanationConversationDidactical demonstration	The seminar is structured as 2 hours per week, every other week
 Classical probability problems. Geometric probability. Conditional probability. Independent events. Bayes' formula. Classical probabilistic models. 	 Interactive exposure Explanation Conversation Individual and group work Interactive exposure 	
Discrete random variables and random	ConversationSynthesisIndividual and group work	
vectors. Operations with discrete random variables.	Interactive exposureExplanationConversationIndividual and group work	
 Continuous random variables and random vectors. Functions of continuous random variables. 	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
6. Numerical characteristics of random variables.	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
7. Inequalities. Sequences of random variables.	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
8.3 Laboratory	Teaching methods	Remarks
1. Introduction to Matlab, I.	 Interactive exposure Explanation Conversation Individual and group work 	
2. Introduction to Matlab, II.	Interactive exposureExplanation	

	ConversationIndividual and group work
2 Discrete random variables Probability	5 1
3. Discrete random variables. Probability distribution function.	Interactive exposure Explanation
distribution function.	ExplanationConversation
4 C 2 1 11 D 1 172	Individual and group work
4. Continuous random variables. Probability	Interactive exposure
density function. CDF and Inverse CDF.	• Explanation
	• Conversation
	Individual and group work
5. PDF and CDF of continuous distributions.	Interactive exposure
Random number generators.	Explanation
	 Conversation
	Individual and group work
6. Numerical characteristics of random	Interactive exposure
variables.	Explanation
	Conversation
	Individual and group work
7. Overview of Statistics Toolbox features.	Interactive exposure
Samples.	• Conversation
	 Synthesis
	Individual and group work
8. Descriptive Statistics. Grouped frequency	Interactive exposure
distribution, graphical display of data.	• Explanation
Statistical measures.	• Conversation
	Individual and group work
9. Correlation and regression.	Interactive exposure
y continuen und regression.	• Explanation
	• Conversation
	Individual and group work
10. Confidence intervals for one population.	Interactive exposure
population	• Explanation
	Conversation
	Individual and group work
11. Confidence intervals for comparing two	Interactive exposure
populations.	Explanation
populations.	Conversation
12. Hymothesis and significance testing for an	Individual and group work Literative and group work
12. Hypothesis and significance testing for one population.	• Interactive exposure
population.	• Explanation
	Conversation
12 Hamathasia and disciplination of the	Individual and group work
13. Hypothesis and significance testing for	Interactive exposure
comparing two populations.	• Explanation
	• Conversation
11 0 1 2 11	Individual and group work
14. Overview of statistical methods	Interactive exposure
	Explanation
	Conversation
	Individual work
Bibliography	
1. Micula, S., Probability and Statistics for Comp	utational Sciences, Cluj University Press, 2009.
	<u> </u>

- 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	- acquire the basic	Written exam on problems	50%
	principles in Probability	only (a sheet with the main	
	Theory and Mathematical	probabilistic and statistical	
	Statistics;	formulas is available)	
	- be able to apply correctly		
	the course concepts on		
	various applications		
	- problem solving		
10.5 Seminar activities	- be able to apply course	- participation in discussing	25%
	concepts and techniques	and solving problems	
	on practical problems	throughout the semester	
	- be able to choose and	- additional documentation	
	apply the right	- individual presentation of	
	probabilistic or statistical	solutions	
	model to various practical	- solving bonus problems	
	problems		
	- problem solving		
10.6 Lab activities	- be able to implement	- participation in discussing	25%
	course concepts and	and solving problems	
	algorithms in Matlab	throughout the semester	
	- be able to solve	- lab exam (numerical	
	numerical statistical	statistical applications)	
	problems in Matlab		
10.7 Minimum performar	ice standards		

10.7 Minimum performance standards

A grade of 5 or above (on a scale from 1 to 10) on each of the three activities mentioned above (written test, seminar evaluation, lab evaluation)

Date	Signature of course coordinator	Signature of seminar coordinator
28 04 2015	Lect Prof. PhD. Sanda Micula	Lect Prof. PhD. Sanda Micula

Date of approval	Signature of the head of department