SYLLABUS

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Data Structures and Algorithms							
2.2 Course coo	2.2 Course coordinator Lecturer PhD. Dana Lupsa						
2.3 Seminar coordinator				Lecturer PhD. Dana Lupsa			
2.4. Year of	1	2.5 Semester	2	2.6. Type of	E	2.7 Type of	Compulsory
study				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					6
Evaluations					14
Other activities:					
3.7 Total individual study hours		58			•
3.8 Total hours per semester 100					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•
4.2. competencies	•

4

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies	C 4.1 Definirea conceptelor și principiilor de bază ale informaticii, precum și a teoriilor și modelelor matematice C 4.3 Identificarea modelelor si metodelor adecvate pentru rezolvarea unor probleme reale C 4.5 Încorporarea de modele formale în aplicații specifice din diverse domenii
Transversal competencies	CT1 Aplicarea regulilor de muncă organizată și eficientă, a unor atitudini responsabile față de domeniul didactic-științific, pentru valorificarea creativă a propriului potențial, cu respectarea principiilor și a normelor de etică profesională CT3 Utilizarea unor metode și tehnici eficiente de învățare, informare, cercetare și dezvoltare a capacităților de valorificare a cunoștințelor, de adaptare la cerințele unei societăți dinamice și de comunicare în limba română și într-o limbă de circulație internațională

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of data structure concepts and their algorithms; Improved programming skills
7.2 Specific objective of the discipline	 Understand data structure design, algorithms and their complexities Acquire knowledge necessary for working with data structure libraries Ability to choose appropriate data structure in order to model and solve real world problems

8. Content

o. Content				
8.1 Course	Teaching methods	Remarks		
 Introduction. Data Structures. Abstract Data Types: domain, operations Data type. Data representation. Operation design and implementation. Complexity. Examples. Design issues 	Exposure: description, examples			
 2. 3. Lists Linear List (Sequence) Essential properties ADT Arrays. Vectors Lists. Linked Lists Types of linked list: singly linked, doubly linked, circular Representations & operations design Examples. Implementation issues 	 Interactive exposure Explanation Conversation Didactical demonstration 			
4. Collection containers. Iterators Set, Bag	Exposure: description,			
Stack ; Queue ; Deque	examples, case			

Map, MMap Sorted Containers. Priority Queue - Essential properties - ADT design issues. Examples.	studies
 5. How to choose a data structure? Where to look for advantages / disadvantages (time/space analysis) Examples over linear data structure 	Examples, case studies
6. Hash: Hash table, hash function. Collisions.	Exposure: description, examples, case studies
 7. Hash: Hash table & collision resolution Separate chaining Open adressing Coalesced hashing Performance analysis Containers represented over Hash. 	Exposure: description, explanation, examples, discussion of case studies
 8. Trees Concepts related to trees ADT representation tree traversals; recursive / non recursive algorithms 	Exposure: description, explanation, examples, discussion of case studies
 9. Binary tree representation oprations: search, add, remove an element tree traversals; recursive / non recursive algorithms 	Exposure: description, explanation, examples, discussion of case studies
 10. Heap. Binary heap Representation Priority Queues represented over heaps HeapSort 	Exposure: description, examples, discussion of case studies
11. Binary Search Trees Balanced trees. Terminology. Examples	Exposure: explanation, examples, discussion of case studies
 12. 13. Balanced trees. Red-black trees, AVL trees Balanced trees as representation of sorted containers 	Exposure: description, explanation, examples
14. Applications	Examples, discussion of case studies
Bibliography 1. CORMEN, THOMAS H LEISERSON, CHARLES Cluj-Napoca: Editura Computer Libris Agora, 2000.	S - RIVEST, RONALD R.: Introducere în algoritmi.

Cluj-Napoca: Editura Computer Libris Agora, 2000.
2. FRENTIU M., POP H.F., SERBAN G., Programming Fundamentals, Ed.Presa Universitara Clujeana, Cluj-Napoca, 2006

3. HOROWITZ, E.: Fundamentals of Data Structures in C++. Computer Science Press, 1995.				
4. MOUNT, DAVID M.: Data Structures. University of Maryland, 1993.				
5. NICULESCU V., CZIBULA G., Structuri fundamentale de date. O perspectiva orientata obiect. Editura				
Casa Cartii de Stiinta, Cluj-Napoca, 2011				
6. SIMONAS SALTENIS, Algorithms and Data Structu				
7. STANDISH, T.A.: Data Structures, Algorithms & So	▲	•		
8. Java [™] Platform, Standard Edition 7, API Specification				
9. Java [™] Tutorial. Trail: Collections. <u>http://docs.oracle.</u>	.com/javase/tutorial/colle	ections/index.html		
10. STLProgrammer's Guide http://www.sgi.com/tech/s	<u>tl/index.html</u>			
11. STL Containers - C++ Reference, http://www.cplus	plus.com/reference/stl/			
12. http://www.cs.ubbcluj.ro/~dana/2013-2014/DSA/No				
13. http://www.cs.ubbcluj.ro/~dana/2013-2014/DSA/Pr				
8.2 Seminar	Teaching methods	Remarks		
1. DS as a problem of data representation.	Dialogue, debate,	The seminar is structured		
Algorithms and complexities	case studies,	as 2 hours classes every		
	examples	second week		
2. Representation and operation design for different	Dialogue, debate,			
kind of lists	case studies,			
	examples			
3,4. Container collections	Dialogue, debate,			
ADT, representation under some given	case studies,			
restrictions, operations design	examples			
5. Iterator design.	Dialogue, debate,			
Iterators vs. element access container operation.	case studies,			
1	examples			
6,7. Trees	Dialogue, debate,			
- Operation design	case studies,			
(recursive/ non recursive)	examples			
- Problems with trees				
Binary trees				
- Operation design				
(recursive/ non recursive)				
- Iterators over binary trees				
Pibliography				

Bibliography

1. CORMEN, THOMAS H. - LEISERSON, CHARLES - RIVEST, RONALD R.: Introducere în algoritmi. Cluj-Napoca: Editura Computer Libris Agora, 2000.

2. FRENTIU M., POP H.F., SERBAN G., Programming Fundamentals, Ed.Presa Universitara Clujeana, Cluj-Napoca, 2006

3. HOROWITZ, E.: Fundamentals of Data Structures in C++. Computer Science Press, 1995.

4. STANDISH, T.A.: Data Structures, Algorithms & Software Principles in C, Addison-Wesley, 1995

5. SIMONAS SALTENIS, Algorithms and Data Structures, 2002.

6. http://www.cs.ubbcluj.ro/~dana/2013-2014/DSA/Seminary/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course respects ACM Curriculla Recommendations for Computer Science studies

• The course exists in the studying program of all major universities in Romania and abroad;

• "Many of the top software companies like Google and Facebook hire experienced computer scientists who have extensive knowledge of algorithms and data structures. These areas are also a topic in software development interviews at both startups and large companies"

٠

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts 	Written exam	60%
10.5 Seminar/lab activities	Realization of a project - apply the course concepts - problem solving	Project evaluation	20%
	 Homework assignments, including intermediate delivery of (parts of) the project Homework discussion Seminar activity 	Oral evaluation	20%
10.6 Minimum performanc		1	1
1		cam, homework evaluation and f	inal grade

Date

Signature of course coordinator

lecturer PhD Dana Lupsa

Signature of seminar coordinator

lecturer PhD Dana Lupsa

.....

Date of approval

Signature of the head of department

.....

.....