
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş-Bolyai University of Cluj-Napoca

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Departament of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline Object Oriented Programming

2.2 Course coordinator Assoc. prof. PhD Czibula Istvan Gergely

2.3 Seminar coordinator Assoc. prof. PhD Czibula Istvan Gergely

2.4. Year of

study

1 2.5

Semester

2 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 5 Of which: 3.2 course 2 3.3

seminar/laboratory

1 sem

2 lab

3.4 Total hours in the curriculum 70 Of which: 3.5 course 28 3.6

seminar/laboratory

42

Time allotment: hours

Learning using manual, course support, bibliography, course notes 24

Additional documentation (in libraries, on electronic platforms, field documentation) 15

Preparation for seminars/labs, homework, papers, portfolios and essays 19

Tutorship 9

Evaluations 13

Other activities: -

3.7 Total individual study hours 80

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum Fundamentals of Programming, Data Structures

4.2. competencies Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course Class room with projector

5.2. for the seminar /lab

activities

Laboratory with computers; C++ and programming language and QT

library

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es

C1.1 Description of programming paradigms and of language specific mechanisms, as well as

 identification of syntactic and semantic differences.

C1.2 Explanation of existing software applications, on different levels of abstraction (architecture,

 packages, classes, methods) using adequate basic knowledge

C1.3 Elaboration of adequate source codes and testing of components in a given programming

 language, based on some given specifications

C1.4 Testing applications based on testing plans

C1.5 Developing units of programs and corresponding documentations

T
r
a

n
sv

er
sa

l

c
o

m
p

e
te

n
ci

es
 CT1 Application of efficient and rigorous working rules, manifest responsible attitudes toward the

 scientific and didactic fields, respecting the professional and ethical principles.

CT3 Use of efficient methods and techniques for learning, information, research and development

 of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for

 communication in Romanian as well as in a widely used foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. The Object Oriented Programming Paradigm.

• Basic elements of C++ language.

• Lexical elements. Operators. Conversions.

• Data types. Variables. Constants.

• Visibility scope and lifetime of the variables.

Namespaces.

• C++ Statements.

• Function declaration and definition. Function

overloading. Inline function.

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

2. Modular programming in C++.

• Functions. Parameters.

• Header files. Libraries.

• Modular implementations of ADTS.

• Using the void pointer to achieve genericity.

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

3. Derived data types and user data types, dynamic

allocation in C++.
• Interactive exposure

7.1 General objective of the

discipline

• To prepare an object-oriented design of small/medium scale problems

and to learn C++ and QT.

7.2 Specific objective of the

discipline

• To demonstrate the differences between traditional imperative design

and object-oriented design.

• To explain class structures as fundamental, modular building blocks.

• To understand the role of inheritance, polymorphism, dynamic binding

and generic structures in building reusable code.

• To explain and to use defensive programming strategies, employing

formal assertions and exception handling.

• To write small/medium scale C++ programs using QT.

• To use classes written by other programmers when constructing their

systems.

• Data types: array and struct.

• Data types: pointer and reference.

• Memory allocation and deallocation.

• Pointers to functions and pointers void.

• Explanation

• Conversation

• Didactical

demonstration

4. Object oriented programming in C++.

• Classes and objects.

• Members of a class. Access modifiers.

• Constructors / destructors

• UML diagrams for classes (members,

accessibility).

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

5. Inheritance

• Simple inheritance. Derived classes.

• Substitution principle.

• Method overriding.

• Multiple inheritance.

• Specialization/generalization relation - UML

representation.

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

6. Input/output operation.

• I/O streams. I/O Hierarchies of classes.

• Format. Manipulators.

• Text files.

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

7. QT Toolkit.

• QT tools and modules.

• QT Installation.

• Examples

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

8. QT

• Signals and slots.

• QWidget.

• Examples

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

9. Working with QT Designer in Eclipse (1)

• Design of GUI

• Master detail – Product. Case study

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

10. Working with QT Designer in Eclipse (2)

• Master detail – Product. Case study

• MVC pattern

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

11. Design patterns

• Creational, structural, behavioral design patterns.

• Examples.

STL library.

• Container classes.

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

12. STL library

• STL iterators.

• STL allgorithms

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

13. POS (Point Of Sale) application

• Façade, Strategy design patterns

• Composite design pattern

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

14. Revision • Interactive exposure

• Conversation

Bibliography

1. B. Stroustup, The C++ Programming Language, Addison Wesley, 1998.
2. Bruce Eckel, Thinking in C++, www.bruceeckel.com
3. Alexandrescu, Programarea moderna in C++. Programare generica si modele de proiectare aplicate, Editura

Teora, 2002
4. M. Frentiu, B. Parv, Elaborarea programelor. Metode si tehnici moderne, Ed. Promedia, Cluj-Napoca, 1994.
5. E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, Oxford,

1995.
6. K.A. Lambert, D.W. Nance, T.L. Naps, Introduction to Computer Science with C++, West Publishing Co.,

New-York, 1996.
7. L. Negrescu, Limbajul C++, Ed. Albastra,Cluj-Napoca 1996.

8.2 Seminar Teaching methods Remarks

 The seminar is

structured as 2 hours

classes every two week

1. Simple problems in C++. Functions. Function

parameters. Variables (local and global) and their

visibility. Vectors (uni and multi dimensional) and

structures.

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstation

2. ADT Container with generic elements (void*):

visible representation and hidden representation.

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstation

3. Classes. Simple classes. Operator overloading.

Classes with objects as data members .
• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstation

4. Classes of type dynamic list and iterators.

Inheritance.
• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstation

5. Abstract classes and interfaces. Polymorphism • Interactive exposure

• Explanation

• Conversation

• Didactical

demonstation

6. Classes: template and exceptions • Interactive exposure

• Explanation

• Conversation

• Didactical

demonstation

7. Complex problems implementing by following the • Interactive exposure

UML diagram. Design patterns. Preparation for the

written exam.
• Explanation

• Conversation

• Didactical

demonstation

8.3 Laboratory Teaching methods Remarks

 • The lab is structured

as 2 hours classes

every week.

• The lab documents are

due one week after the

lab theme has been

given and the lab

programs are due two

weeks later.

1. Installation of MinGW and Eclipse CDT

Specification, design and implementation of

simple problems in C/C++. General aspects of

C/C++ language.

• Lab assignment

• Explanation

• Conversation

2. Modular programming in C++ • Lab assignment

• Explanation

• Conversation

3. Feature driven software development process • Lab assignment

• Explanation

• Conversation

4. Feature driven software development process • Lab assignment

• Explanation

• Conversation

5. Feature driven software development process •

6. Layered architecture • Lab assignment

• Explanation

• Conversation

7. Layered architecture • Lab assignment

• Explanation

• Conversation

8. Layered architecture • Lab assignment

• Explanation

• Conversation

9. Text files • Lab assignment

• Explanation

• Conversation

10. GUI using QT • Lab assignment

• Explanation

• Conversation

11. Repository. • Lab assignment

• Explanation

• Conversation

12. STL containers, iterators and algorithms • Lab assignment

• Explanation

• Conversation

13. Lab delivery time (see remark above) • Lab assignment

• Explanation

• Conversation

14. Lab delivery time (see remark above) • Lab assignment

• Explanation

• Conversation

Bibliography
1. B. Stroustup, The C++ Programming Language, Addison Wesley, 1998.
2. Bruce Eckel, Thinking in C++, www.bruceeckel.com
3. Alexandrescu, Programarea moderna in C++. Programare generica si modele de proiectare aplicate, Editura

Teora, 2002
4. M. Frentiu, B. Parv, Elaborarea programelor. Metode si tehnici moderne, Ed. Promedia, Cluj-Napoca, 1994.
5. E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, Oxford,

1995.
6. K.A. Lambert, D.W. Nance, T.L. Naps, Introduction to Computer Science with C++, West Publishing Co.,

New-York, 1996.
7. L. Negrescu, Limbajul C++, Ed. Albastra,Cluj-Napoca 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.

• The course exists in the studying program of all major universities in Romania and abroad.

• The content of the course is considered the software companies as important for average

programming skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course • The correctness and

completeness of the

accumulated

knowledge and the

capacity to design and

implement correct C++

programs

Written exam (in the regular

session)

40%

• Be able to design, test

and debug a C++

program using QT

Practical evaluation (in the

regular session)

30% 10.5 Seminar/Lab

activities

• Correctness of C++

programs and lab

documentations

-documentation

-portofolio

-continuous observations

30%

10.6 Minimum performance standards

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the,

that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish

certain connections and to use the knowledge in solving different problems in C++ programming

language.

• Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date Signature of course coordinator Signature of seminar coordinator

20.04.2015 Assoc. prof. Istvan Gergely Czibula Assoc. Prof. Istvan Gergely Czibula

Date of approval Signature of the head of department

 Prof. dr. Bazil Pârv

