SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Object Oriented Programming							
2.2 Course coordinator Assoc. prof. PhD Czibula Istvan Gergely							
2.3 Seminar coordinator				Assoc. prof. PhD Czibula Istvan Gergely			
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	2 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					19
Tutorship					9
Evaluations					13
Other activities:					-
2.7 Total individual study hours		90			1

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Programming, Data Structures
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	Laboratory with computers; C++ and programming language and QT
activities	library

6. Specific competencies acquired

		C1.1 Description of programming paradigms and of language specific mechanisms, as well as
		identification of syntactic and semantic differences.
nal	competencies	C1.2 Explanation of existing software applications, on different levels of abstraction (architecture,
sioi	tenc	packages, classes, methods) using adequate basic knowledge
les	ıpet	C1.3 Elaboration of adequate source codes and testing of components in a given programming
Pro	om	language, based on some given specifications
	9	C1.4 Testing applications based on testing plans
		C1.5 Developing units of programs and corresponding documentations
		CT1 Application of efficient and rigorous working rules, manifest responsible attitudes toward the
ਕ	ies	scientific and didactic fields, respecting the professional and ethical principles.
ers	enc	CT3 Use of efficient methods and techniques for learning, information, research and development
nsv pet		of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for
Transversal	competencies	communication in Romanian as well as in a widely used foreign language
	C	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To prepare an object-oriented design of small/medium scale problems and to learn C++ and QT.
7.2 Specific objective of the discipline	 To demonstrate the differences between traditional imperative design and object-oriented design. To explain class structures as fundamental, modular building blocks. To understand the role of inheritance, polymorphism, dynamic binding and generic structures in building reusable code. To explain and to use defensive programming strategies, employing formal assertions and exception handling. To write small/medium scale C++ programs using QT. To use classes written by other programmers when constructing their systems.

8. Content

8.1 Course	Teaching methods	Remarks
1. The Object Oriented Programming Paradigm.	Interactive exposure	
• Basic elements of C++ language.	Explanation	
 Lexical elements. Operators. Conversions. 	Conversation	
 Data types. Variables. Constants. 	Examples	
 Visibility scope and lifetime of the variables. 	Didactical	
Namespaces.	demonstration	
• C++ Statements.		
 Function declaration and definition. Function 		
overloading. Inline function.		
2. Modular programming in C++.	Interactive exposure	
• Functions. Parameters.	Explanation	
 Header files. Libraries. 	Conversation	
 Modular implementations of ADTS. 	Examples	
• Using the void pointer to achieve genericity.	Didactical	
	demonstration	
3. Derived data types and user data types, dynamic	Interactive exposure	
allocation in C++.		

• Data types: array and struct.	Explanation
• Data types: pointer and reference.	Conversation
Memory allocation and deallocation.	Didactical
 Pointers to functions and pointers void. 	demonstration
4. Object oriented programming in C++.	Interactive exposure
• Classes and objects.	• Explanation
 Members of a class. Access modifiers. 	• Conversation
Constructors / destructors	Didactical
 UML diagrams for classes (members, 	demonstration
accessibility).	demonstration
5. Inheritance	Interactive exposure
 Simple inheritance. Derived classes. 	• Explanation
 Substitution principle. 	• Conversation
Method overriding.	Didactical
•	
Multiple inheritance.	demonstration
Specialization/generalization relation - UML	
representation.	2 Internation cons
6. Input/output operation.	• Interactive exposure
• I/O streams. I/O Hierarchies of classes.	• Explanation
• Format. Manipulators.	Conversation
• Text files.	Didactical
	demonstration
7. QT Toolkit.	Interactive exposure
QT tools and modules.	Explanation
• QT Installation.	Conversation
• Examples	Didactical
	demonstration
8. QT	Interactive exposure
• Signals and slots.	Explanation
• QWidget.	Conversation
• Examples	Didactical
	demonstration
9. Working with QT Designer in Eclipse (1)	Interactive exposure
Design of GUI	• Explanation
Master detail – Product. Case study	• Conversation
·	Didactical
	demonstration
10. Working with QT Designer in Eclipse (2)	Interactive exposure
Master detail – Product. Case study	• Explanation
MVC pattern	• Conversation
- · · · · · · · · · · · · · · · · · · ·	Didactical
	demonstration
11. Design patterns	Interactive exposure
 Creational, structural, behavioral design patterns. 	Explanation
 Examples. 	• Conversation
STL library.	Didactical
• Container classes.	demonstration
12. STL librarySTL iterators.	Interactive exposure Evaluation
	• Explanation
STL allgorithms	• Conversation
	• Didactical
	demonstration

13. POS (Point Of Sale) application	Interactive exposure
Façade, Strategy design patterns	• Explanation
Composite design pattern	• Conversation
	Didactical
	demonstration
14. Revision	Interactive exposure
	• Conversation

Bibliography

- 1. B. Stroustup, The C++ Programming Language, Addison Wesley, 1998.
- 2. Bruce Eckel, Thinking in C++, www.bruceeckel.com
- 3. Alexandrescu, Programarea moderna in C++. Programare generica si modele de proiectare aplicate, Editura Teora, 2002
- 4. M. Frentiu, B. Parv, Elaborarea programelor. Metode si tehnici moderne, Ed. Promedia, Cluj-Napoca, 1994.
- 5. E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, Oxford, 1995
- 6. K.A. Lambert, D.W. Nance, T.L. Naps, Introduction to Computer Science with C++, West Publishing Co., New-York, 1996.

7. L. Negrescu, Limbajul C++, Ed. Albastra, Cluj-Napoca 1996.

7. L. Negrescu, Limbajui C++, Ed. Albastra, Ciuj-Napoca		Damanira
8.2 Seminar	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every two week
1. Simple problems in C++. Functions. Function	• Interactive exposure	
parameters. Variables (local and global) and their	• Explanation	
visibility. Vectors (uni and multi dimensional) and	• Conversation	
structures.	Didactical	
	demonstation	
2. ADT Container with generic elements (void*):	• Interactive exposure	
visible representation and hidden representation.	Explanation	
	• Conversation	
	Didactical	
	demonstation	
3. Classes. Simple classes. Operator overloading.	• Interactive exposure	
Classes with objects as data members.	Explanation	
	• Conversation	
	Didactical	
	demonstation	
4. Classes of type dynamic list and iterators.	• Interactive exposure	
Inheritance.	Explanation	
	• Conversation	
	Didactical	
	demonstation	
5. Abstract classes and interfaces. Polymorphism	Interactive exposure	
	• Explanation	
	• Conversation	
	Didactical	
	demonstation	
6. Classes: template and exceptions	Interactive exposure	
	• Explanation	
	• Conversation	
	Didactical	
	demonstation	
7. Complex problems implementing by following the	Interactive exposure	
The first state of the state wing the	interactive exposure	

UML diagram. Design patterns. Preparation for the	Explanation	
written exam.	• Conversation	
	Didactical	
	demonstation	
8.3 Laboratory	Teaching methods	Remarks
0.5 Euroratory	Teaching methods	• The lab is structured
		as 2 hours classes
		every week.
		• The lab documents are
		due one week after the
		lab theme has been
		given and the lab
		programs are due two
		weeks later.
1. Installation of MinGW and Eclipse CDT	Lab assignment	
Specification, design and implementation of	Explanation	
simple problems in C/C++. General aspects of	 Conversation 	
C/C++ language.		
2. Modular programming in C++	 Lab assignment 	
	 Explanation 	
	 Conversation 	
3. Feature driven software development process	Lab assignment	
	 Explanation 	
	 Conversation 	
4. Feature driven software development process	Lab assignment	
	 Explanation 	
	 Conversation 	
5. Feature driven software development process	•	
6. Layered architecture	Lab assignment	
	 Explanation 	
	 Conversation 	
7. Layered architecture	Lab assignment	
	Explanation	
	• Conversation	
8. Layered architecture	Lab assignment	
·	Explanation	
	• Conversation	
9. Text files	Lab assignment	
	• Explanation	
	• Conversation	
10. GUI using QT	Lab assignment	
	• Explanation	
	• Conversation	
11. Repository.	Lab assignment	
•	• Explanation	
	• Conversation	
12. STL containers, iterators and algorithms	Lab assignment	
, , , , , , , , , , , , , , , , , , , ,	• Explanation	
	• Conversation	
13. Lab delivery time (see remark above)	Lab assignment	
10. Zao don or anno (bee remain doore)	Lao assignment	

	ExplanationConversation
14. Lab delivery time (see remark above)	Lab assignment
	Explanation
	• Conversation

Bibliography

- 1. B. Stroustup, The C++ Programming Language, Addison Wesley, 1998.
- 2. Bruce Eckel, Thinking in C++, www.bruceeckel.com
- 3. Alexandrescu, Programarea moderna in C++. Programare generica si modele de proiectare aplicate, Editura Teora, 2002
- 4. M. Frentiu, B. Parv, Elaborarea programelor. Metode si tehnici moderne, Ed. Promedia, Cluj-Napoca, 1994.
- 5. E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, Computer Science Press, Oxford, 1995.
- 6. K.A. Lambert, D.W. Nance, T.L. Naps, Introduction to Computer Science with C++, West Publishing Co., New-York, 1996.
- 7. L. Negrescu, Limbajul C++, Ed. Albastra, Cluj-Napoca 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the studying program of all major universities in Romania and abroad.
- The content of the course is considered the software companies as important for average programming skills

10. Evaluation

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	The correctness and completeness of the accumulated knowledge and the capacity to design and implement correct C++ programs	Written exam (in the regular session)	40%	
10.5 Seminar/Lab activities	Be able to design, test and debug a C++ program using QT	Practical evaluation (in the regular session)	30%	
	Correctness of C++ programs and lab documentations	-documentation -portofolio -continuous observations	30%	

10.6 Minimum performance standards

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems in C++ programming language.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date Signature of course coordinator Signature of seminar coordinator

20.04.2015 Assoc. prof. Istvan Gergely Czibula Assoc. Prof. Istvan Gergely Czibula

Date of approval

Signature of the head of department

Prof. dr. Bazil Pârv