SYLLABUS

it intornation regarding the progre				
1.1 Higher education institution	Babeş-Bolyai University			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme / Qualification	Computer Science			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline		Algebra			
2.2 Course coor	rdin	ator		Prof.PhD. Septimiu Crivei			
2.3 Seminar coo	ordi	nator		Prof.PhD. Septimiu Crivei			
2.4. Year of	1	2.5	1	2.6. Type of	VP	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				28	
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					10
Evaluations					14
Other activities:				0	
3.7 Total individual study hours		94			
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

+ Trerequisites (in necessary)			
4.1. curriculum	•		
4.2. competencies	•		

6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

P	. Specific competencies acquireu				
Professional competencies	 C3.1 Description of concepts, theories and models used in the application field C4.3 Identification of adequate models and methods for solving real problems 				
Transversal competencies	 CT2 Efficient fulfillment of organized activities in an inter-disciplinary group and development of empathic abilities of inter-personal communication, relationship and collaboration with various groups 				

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To introduce the basic notions of linear algebra as well as some of its applications to computer science
7.2 Specific objective of the discipline	• To present some applications of linear algebra to computer science

8. Content

8.1 Course	Teaching methods	Remarks
1. Functions. Equivalence relations and partitions	interactive exposure, explanation,	
	didactical demonstration	
2. Binary operations. Groups, subgroups, group	interactive exposure, explanation,	
homomorphisms	didactical demonstration	
3. Rings and fields, subrings and subfields, ring	interactive exposure, explanation,	
homomorphisms	didactical demonstration	
4. Vector spaces, examples. Subspaces. Linear maps	interactive exposure, explanation,	
	didactical demonstration	
5. Linear dependence and independence. Bases,	interactive exposure, explanation,	
dimension. Steinitz theorem	didactical demonstration	
6. Bases and coordinates. Dimension related formulas	interactive exposure, explanation,	
	didactical demonstration	
7. Elementary operations. Matrices and determinants	interactive exposure, explanation,	
	didactical demonstration	
8. Rank and inverse of a matrix. Matrix of a list of	interactive exposure, explanation,	
vectors	didactical demonstration	
9. Matrix of a linear map. Change of basis	interactive exposure, explanation,	
	didactical demonstration	
10. Systems of linear equations, solving methods	interactive exposure, explanation,	
	didactical demonstration	
11. Eigenvectors and eigenvalues	interactive exposure, explanation,	
	didactical demonstration	
12. Bilinear and quadratic forms. Reduction of quadratic	interactive exposure, explanation,	
forms to the canonical form	didactical demonstration	
13. Linear codes, examples. Generator matrix and parity-	interactive exposure, explanation,	
check matrix	didactical demonstration	
14. Decoding linear codes	interactive exposure, explanation,	
	didactical demonstration	
Bibliography		

1. G. (Calugareanu,	Lectii de alge	ebra liniara, Li	ito UBB, (Cluj-Napoca,	1995.
	0 /			· · · ·	J 1 /	

- 2. S. Crivei, Basic abstract algebra, Casa Cartii de Stiinta, Cluj-Napoca, 2002, 2003.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. J. Gilbert, L. Gilbert, Elements of modern algebra, PWS-Kent, Boston, 1992.

5. W.J. Gilber	rt, W.K. Nicholsor	n, Modern algebra with	h applications, John V	Viley, 2004.

5. W.J. Gilbert, W.K. Nicholson, Modern algebra with applications, John Wiley, 2004.					
8.2 Seminar / laboratory	Teaching methods	Remarks			
1. Functions. Equivalence relations and partitions	interactive exposure, conversation				
2. Binary operations. Groups, subgroups, group	interactive exposure, conversation				
homomorphisms					
3. Rings and fields, subrings and subfields, ring	interactive exposure, conversation				
homomorphisms					
4. Vector spaces, examples. Subspaces. Linear maps	interactive exposure, conversation				
5. Linear dependence and independence. Bases,	interactive exposure, conversation				
dimension. Steinitz theorem					
6. Bases and coordinates. Dimension related formulas	interactive exposure, conversation				
7. Elementary operations. Matrices and determinants	interactive exposure, conversation				
8. Rank and inverse of a matrix. Matrix of a list of	interactive exposure, conversation				
vectors					
9. Matrix of a linear map. Change of basis	interactive exposure, conversation				
10. Systems of linear equations, solving methods	interactive exposure, conversation				
11. Eigenvectors and eigenvalues	interactive exposure, conversation				
12. Bilinear and quadratic forms. Reduction of quadratic	interactive exposure, conversation				
forms to the canonical form					
13. Linear codes, examples. Generator matrix and parity-	interactive exposure, conversation				
check matrix					
14. Decoding linear codes	interactive exposure, conversation				
Bibliography					
1. N. Both, S. Crivei, Culegere de probleme de algebra, Lito UBB Cluj-Napoca, 1996.					

2. S. Crivei, Basic abstract algebra, Casa Cartii de Stiinta, Cluj-Napoca, 2002, 2003.

3. I. Purdea, C. Pelea, Probleme de algebra, Editura EIKON, Cluj-Napoca, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The contents is directed towards applications of linear algebra to computer science. •

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of basic concepts, examples	Exam	25
10.5 Seminar/lab	Problem solving	Test, exam, assessments	75
10.6 Minimum per	formance standards		
➢ Grade 5			

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2015	Prof.PhD. Septimiu CRIVEI	Prof.PhD. Septimiu CRIVEI
Date of approval		Signature of the head of department
30.04.2015		Prof.PhD. Octavian AGRATINI