SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Declarative Programming in Machine Learning							
2.2 Course coordinator Prof.Dr. Horia F. Pop							
2.3 Seminar co	2.3 Seminar coordinator Prof.Dr. Horia F. Pop						
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 sem
					1 prj
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:	•	·		·	hours
Learning using manual, course sup	pport,	bibliography, course n	otes		35
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					14
Evaluations					15
Other activities:					-
3.7 Total individual study hours 144					

5.7 Total mulvidual study nouis	144
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	•	Students will attend the course with their mobile phones shut down
5.2. for the seminar /lab	•	Students will attend the seminar with their mobile phones shut down
activities	•	Room with computers as needed; high level programming language
		environment

6. Specific competencies acquired

or opec	ipetencies acquired
I S	 understand, model and represent a CSP problem;
ona	 understand and implement various CSP models;
essi	 model AI, SC, ML methods as CSP problems and approach accordingly
Professional competencies	 understand and be acquainted with declarative frameworks
C0 D	 model machine learning problems using declarative frameworks
	• The ability to apply computational methods in solving real world problems.
	• Responsible execution of lab assignments, research and practical reports.
al ies	• Application of efficient and rigorous working rules.
Transversal competencies	• Manifest responsible attitudes toward the scientific and didactic fields.
Transversal competenci	• Respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To introduce the student in CSP and declarative programming frameworks
7.2 Specific objective of the discipline	 To present the field of CSP as a novel research and application domain. To induce the necessity of CSP methods and techniques by studying some relevant practical applications To offer the student the instruments that will allow him/her to develop different CSP based applications.

8. Content

a. Content		
8.1 Course	Teaching methods	Remarks
Week 1: Administrivia and introduction	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
Week 2-4: Constraint Satisfaction Programming	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
Week 5-6: CSP techniques for AI search	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
Week 7-8: CSP techniques for Soft Computing	Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	

Week 9-10: CSP techniques for Machine Learning	• Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
Week 11: Overview of declarative frameworks	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
Week 12-14: Study of selected declarative frameworks	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration

Bibliography

[1] Edward P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press, London and San Diego, 1993, ISBN 0-12-701610-4

[2] Roman Bartak, On-line Guide to Constraint Programming,

http://ktiml.mff.cuni.cz/~bartak/constraints/index.html

[3] Grzegorz Kondrak, A Theoretical Evaluation of Selected Backtracking Algorithms, M.Sc. Thesis,

University of Alberta, Edmonton, 1994

[4] ShapeLogic, <u>http://www.shapelogic.org</u>	1	
8.2 Seminar / laboratory	Teaching methods	Remarks
Lab 1	• Interactive exposure	
Administration. Survey of the sources of information	• Explanation	
available on Internet and Intranet. Chosing the	Conversation	
paper topics and scheduling the presentations.		
Lab 2-3	• Interactive exposure	
Work on CSP techniques	• Explanation	
	Conversation	
Lab 4	• Interactive exposure	
Delivery of CSP project	• Explanation	
	Conversation	
Lab 5-6	• Interactive exposure	
Work on declarative frameworks	• Explanation	
	Conversation	
Lab 7	• Interactive exposure	
Delivery of frameworks project	• Explanation	
	Conversation	

Bibliography

[1] Edward P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press, London and San Diego, 1993, ISBN 0-12-701610-4

[2] Roman Bartak, On-line Guide to Constraint Programming,

http://ktiml.mff.cuni.cz/~bartak/constraints/index.html

[3] Grzegorz Kondrak, A Theoretical Evaluation of Selected Backtracking Algorithms, M.Sc. Thesis,

University of Alberta, Edmonton, 1994

[4] ShapeLogic, http://www.shapelogic.org

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the field of the discipline.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	30%
10.5 Seminar/lab activities	• Participation in class activities	Proportional to quality of participation	10%
	• A lab project on CSP methods and techniques should be prepared and presented	Evaluation of the project (software implementation, documentation and demonstration)	30%
	 A lab project on declarative frameworks should be prepared and presented 	Evaluation of the project (software implementation, documentation and demonstration)	30%
10.6 Minimum performan	ce standards		

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

- Penalty points are awarded for delays in submission of proposed topic choices and submission of final reports.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5; the written exam grade has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2015	Prof. dr. Horia F. Pop	Prof. dr. Horia F. Pop
Date of approval		Signature of the head of department
		Prof. dr. Bazil Pârv