SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Applied Computational Intelligence			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Statistical Computational Methods								
2.2 Course coordinator Assoc.Prof.PhD. Hannelore Lisei								
2.3 Seminar coordinator			Assoc.Prof.PhD. Hannelore Lisei					
2.4. Year of	1	2.5	1	2.6. Type ofE2.7 Type ofCompulsory				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	course	2	3.3	1
					seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	course	28	3.6	14
					seminar/laboratory	
Time allotment:		·				hours
Learning using manual, course support, bibliography, course notes						56
Additional documentation (in libraries, on electronic platforms, field documentation)					35	
Preparation for seminars/labs, homework, papers, portfolios and essays					30	
Tutorship						14
Evaluations					8	
Other activities:					15	
3.7 Total individual study hours158						
3.8 Total hours per semester		200				
3.9 Number of ECTS credits		8				

4. Prerequisites (if necessary)

4.1. curriculum	Probability Theory, Statistics
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Laptop, beamer
5.2. for the seminar /lab	Laboratory with computers

|--|

6. Specific competencies acquired

orspeen	ic competencies acquired			
Professional competencies	C 4.3 Identifying the models and adequate methods for solving real problems C 4.4 Using simulations for studying the elaborated models and evaluating their performance			
Profe comp				
	CT1			
Transversal competencies	CT3			

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To acquire basic knowledge of the applications of probability theory and mathematical statistics into computational intelligence		
	• To be able to work with various probabilistic and statistical models in Matlab		
	• To be able to perform statistical analysis of data		
7.2 Specific objective of the	Application of Monte Carlo methods		
discipline	Generation of random numbers		
	Simulation stochastic processes		

8. Content

8.1 Course	Teaching methods	Remarks
1. Review of the basic notions of Probability	Lecture, description,	
Theory (random variables, mean, variance,	explanation	
common distributions)		
2. Review of the basic notions from Statistics	Lecture, description,	
(sampling concepts, parameter estimation)	explanation	
3. Generating random variables (general	Lecture, description,	
techniques)	explanation, synthesis	
4. Generating discrete and continuous random	Lecture, description,	
variables	explanation	
5. Exploratory data analysis	Lecture, description,	
	explanation	
6. Classical inferential statistics (hypothesis	Lecture, description,	
testing, confidence intervals)	explanation	
7. Monte Carlo methods for inferential statistics	Lecture, description,	
	explanation	
8. Regression methods	Lecture, description,	
	explanation	
9. Markov chains (1)	Lecture, description,	
	explanation	
10. Markov chains (2)	Lecture, description,	
	explanation	
11. Monte Carlo methods	Lecture, description,	

	explanation
12. Simulation of stochastic processes	Lecture, description,
	explanation,
	modelling
13. Random walks and Wiener processes	Lecture, description,
	explanation,
	modelling
14. Poisson processes	Lecture, description,
	explanation,
	modelling

Bibliography

- S. Asmussen, P.W. Glynn, Stochastic Simulation Algorithms and Analysis, Springer Verlag, 2007
- J. Gentle, Random Number Generation and Monte Carlo Methods, Springer Verlag, 2003
- J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer, 2001
- B.V. Gnedenko, The theory of probability and the elements of statistics, AMS Chelsea Publishing, Providence, RI, 2005
- P.S. Mann, Introductory statistics, Hoboken, NJ: John Wiley & Sons, 2007
- W. L. Martinez, A. R. Martinez, Computational Statistics Handbook with MATLAB, Chapman Hall/CRC, 2007
- C. Robert, G. Casella, Monte Carlo Statistical Methods, Springer Verlag, 2004
- S.M. Ross, Simulation, Academic Press, 2002
- N.C. Roşca, Monte Carlo and Quasi-Monte Carlo methods with applications, Presa Univ. Clujeană, 2009

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Matlab Codes - applications to probability theory	Presentation,	The seminar is structured
(Review)	individual work	as 2 hours classes every
		second week
2. Matlab Codes - applications to statistics	Presentation,	
	individual work	
3. Generating random variables	Presentation,	
	individual work,	
4. Markov chains - examples	Discussion, group-	
	based work	
5. Monte Carlo methods	Discussion, group-	
	based work,	
	modelling	
6. Simulation of stochastic processes (modelling)	Presentation,	
	individual work,	
7. Presentation of the individual projects	Presentation	

Bibliography

- P. Blaga, Statistică prin Matlab, Presa Univ. Clujeană, 2002
- G.H. Givens, J. A. Hoeting, Computational Statistics, Wiley Series in Probability and Statistics, 2005
- G.R. Grimmett G.R., D.R. Stirzaker, Probability and Random Processes, Oxford University Press, 2001
- W. L. Martinez, A. Martinez, J. Solka, Exploratory Data Analysis with MATLAB, Chapman & Hall/CRC, 2010

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course contains applications of probability theory and statistics into computational intelligence.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Knowledge of main concepts presented in the course	Written exam	70%			
10.5 Seminar/lab activities	To be able to implement in Matlab course concepts and algorithms	-Practical examination -presentation -continuous observations	30%			
10.6 Minimum performance standards						
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work. The student should be able to simulate random numbers/processes by using Matlab.						

DateSignature of course coordinatorSignature of seminar coordinator

04.05.2015 Assoc.Prof.PhD. Hannelore Inge Lisei Assoc.Prof.PhD Hannelore Inge Lisei

Date of approval

Signature of the head of department

.....

.....