
SYLLABUS

1. Information regarding the programme
1.1 Higher education institution Babeş Bolyai University
1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Master

1.6 Study programme / 
Qualification 

High Performance Computing and Big Data Analytics 
Profile

2. Information regarding the discipline 
2.1 Name of the discipline Resource Aware Computation
2.2 Course coordinator Assoc. Prof.  PhD. Ing. Florin Craciun
2.3 Seminar coordinator Assoc. Prof.  PhD. Ing. Florin Craciun
2.4. Year of 
study

1 2.5 
Semester

2 2.6. Type of 
evaluation

E 2.7 Type of
discipline

compulsory

3. Total estimated time (hours/semester of didactic activities) 
3.1 Hours per week 3 Of which: 3.2 

course
2 3.3 

seminar/laboratory
1

3.4 Total hours in the curriculum 42 Of which: 3.5 
course

28 3.6 
seminar/laboratory

14

Time allotment: hours
Learning using manual, course support, bibliography, course notes 30
Additional documentation (in libraries, on electronic platforms, field documentation) 30
Preparation for seminars/labs, homework, papers, portfolios and essays 70
Tutorship 14
Evaluations 14
Other activities: .................. -
3.7 Total individual study hours 158
3.8 Total hours per semester 200
3.9 Number of ECTS credits 8

4. Prerequisites (if necessary)
4.1. curriculum  None
4.2. competencies  Basic software development skills

 Procedural and Object-oriented paradigms

5. Conditions (if necessary)
5.1. for the course

6. Specific competencies acquired 



Professi
onal

compete
ncies

 Understanding and working with basic concepts in software engineering;
 Knowledge, understanding and use of basic concepts of theoretical Computer 

Science
 Capability of analysis and synthesis;
 Proficient use of methodologies and tools specific tool software systems
 Good programming skills in high-level languages

Transve
rsal 
compete
ncies

 Improved programming abilities: debugging and correcting compilers errors 
 Ability to apply compiler techniques to different real life problems 

7. Objectives of the discipline (outcome of the acquired competencies)
7.1 General objective of 
the discipline

• To understand fundamental concepts of software quality. 

• To be able to apply basic methods for software analysis and 
software quality assurance.

7.2 Specific objective of 
the discipline

• To learn the methods of program verification and validation.

• To become used with building correct programs from 
specifications

• To acquire a modern programming style

• To understand how the resources(memory, CPU, batery) are 
used by the programs

8. Content
8.1 Course Teaching methods Remarks

1. Semantics of sequential programs. 
Procedural paradigm. Object-oriented 
paradigm. Functional paradigm. 
Operational semantics. Denotational 
semantics. Small-Steps Semantics. Big-
Steps Semantics.

Exposure,description,
explanation, debate 
and dialogue, 
discussion of case 
studies

2. Semantics of concurrent programs. 
Concurrency models. Processes & threads
Atomic actions, interleaving model. 
Transition systems & diagrams,Safety and 
liveness. 

explanation, debate 
and dialogue, 
discussion of case 
studies

3. Semantics of concurrent programs. Critical 
regions, lock protocols. Barriers, 
Semaphores, Monitors, Deadlocks

Exposure,description,
explanation

4. Semantics of multicore programs. Cell 
processors. Parallel architectures. Parallel 
programming concepts. 

Exposure,description,
explanation

5. Semantics of multicore programs.  Parallel Exposure,description,

http://www2.imm.dtu.dk/courses/02158/transsys_slides.pdf


programming design patterns. StreamIt 
language. Parallelizing compilers.

explanation, 
discussion of case 
studies

6. Semantics of resources usage in sequential, 
concurrent and parallel paradigms. Memory 
usage models. 

Exposure,description,
explanation, 
discussion of case 
studies

7. Semantics of resources usage in sequential, 
concurrent and parallel paradigms. Memory 
usage models. CPU usage models. Battery 
usage models.

Exposure,description,
explanation, 

8. Static analysis. Principles.Dataflow 
analysis.Type-based analysis

Exposure,description,
explanation

9. Static analysis. Symbolic execution. Abstract 
interpretation

Exposure,description,
explanation, 
discussion of case 
studies

10. Automatic verification. Hoare logic. 
Separation logic. Modular verification

Exposure,description,
explanation, 
discussion of case 
studies

11. Automatic verification. Theory solvers in 
SMT. Invariant inference

Exposure,description,
explanation, 
discussion of case 
studies

12. Analysis and verification of memory usage. 
Memory models. Shape analysis. Type based 
methods. Separation logic methods.

Exposure,description,
explanation, 
discussion of case 
studies

13.  Analysis and verification of cpu usage. Cost 
analysis. Loop invariants. 

Exposure,description,
explanation, 
discussion of case 
studies

14.  Analysis and verification of battery usage. 
Energy-aware programming techniques. 
Approximate computations. Techniques to control
the battery usage

Exposure,description,
explanation, 
discussion of case 
studies
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8.2 Seminar / laboratory Teaching methods Remarks

1. (2nd week) First Project: Use K-framework 
to describe the semantics of a sequential 
program

Use practical tools to 
implement a small 
project

Seminar is organized 
as a total of 7 hours –
2 hours every second 
week



2. (4th week)Second Project: Use K-
framework to describe the semantics of a 
concurrent program

Use practical tools to 
implement a small 
project

3. (6th week) Third project:Use Hip/Sleek to 
verify sequential programs.

Use practical tools to 
implement a small 
project

4. (8th week) Forth project:Use Verifast to 
verify concurrent programs

Use practical tools to 
implement a small 
project

5. (10th week) Fifth project:Use Hip/Sleek to 
verify the memory usage

Use practical tools to 
implement a small 
project

6. (12th week) Sixth project: Use Hip/Sleek to 
verify cpu and battery usage

Use practical tools to 
implement a small 
project

7. (14th week) Evaluation of the projects
Bibliography

Students will use the following tools: K-framework, Hip/Sleek and Verifast

9. Corroborating the content of the discipline with the expectations of the epistemic community, 
professional associations and representative employers within the field of the program

  The course respects the IEEE and ACM Curriculla Recommendations for Software 
Engineering studies;

 The content of the course is considered by the software companies as important for  software 
development skills 

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in 

the grade (%)
10.4 Course - know the basic principle of

the domain;
- apply the course concepts
- problem solving

Written exam 40.00%

10.5 Seminar/lab 
activities

– be able to implement
course concept

-Practical examination 60.00%

10.6 Minimum performance standards
 At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.
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