
SYLLABUS

1. Information regarding the programme
1.1 Higher education institution Babeş Bolyai University
1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Master

1.6 Study programme /
Qualification

High Performance Computing and Big Data Analytics
Profile

2. Information regarding the discipline
2.1 Name of the discipline Resource Aware Computation
2.2 Course coordinator Assoc. Prof. PhD. Ing. Florin Craciun
2.3 Seminar coordinator Assoc. Prof. PhD. Ing. Florin Craciun
2.4. Year of
study

1 2.5
Semester

2 2.6. Type of
evaluation

E 2.7 Type of
discipline

compulsory

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 3 Of which: 3.2

course
2 3.3

seminar/laboratory
1

3.4 Total hours in the curriculum 42 Of which: 3.5
course

28 3.6
seminar/laboratory

14

Time allotment: hours
Learning using manual, course support, bibliography, course notes 30
Additional documentation (in libraries, on electronic platforms, field documentation) 30
Preparation for seminars/labs, homework, papers, portfolios and essays 70
Tutorship 14
Evaluations 14
Other activities: -
3.7 Total individual study hours 158
3.8 Total hours per semester 200
3.9 Number of ECTS credits 8

4. Prerequisites (if necessary)
4.1. curriculum  None
4.2. competencies  Basic software development skills

 Procedural and Object-oriented paradigms

5. Conditions (if necessary)
5.1. for the course

6. Specific competencies acquired

Professi
onal

compete
ncies

 Understanding and working with basic concepts in software engineering;
 Knowledge, understanding and use of basic concepts of theoretical Computer

Science
 Capability of analysis and synthesis;
 Proficient use of methodologies and tools specific tool software systems
 Good programming skills in high-level languages

Transve
rsal
compete
ncies

 Improved programming abilities: debugging and correcting compilers errors
 Ability to apply compiler techniques to different real life problems

7. Objectives of the discipline (outcome of the acquired competencies)
7.1 General objective of
the discipline

• To understand fundamental concepts of software quality.

• To be able to apply basic methods for software analysis and
software quality assurance.

7.2 Specific objective of
the discipline

• To learn the methods of program verification and validation.

• To become used with building correct programs from
specifications

• To acquire a modern programming style

• To understand how the resources(memory, CPU, batery) are
used by the programs

8. Content
8.1 Course Teaching methods Remarks

1. Semantics of sequential programs.
Procedural paradigm. Object-oriented
paradigm. Functional paradigm.
Operational semantics. Denotational
semantics. Small-Steps Semantics. Big-
Steps Semantics.

Exposure,description,
explanation, debate
and dialogue,
discussion of case
studies

2. Semantics of concurrent programs.
Concurrency models. Processes & threads
Atomic actions, interleaving model.
Transition systems & diagrams,Safety and
liveness.

explanation, debate
and dialogue,
discussion of case
studies

3. Semantics of concurrent programs. Critical
regions, lock protocols. Barriers,
Semaphores, Monitors, Deadlocks

Exposure,description,
explanation

4. Semantics of multicore programs. Cell
processors. Parallel architectures. Parallel
programming concepts.

Exposure,description,
explanation

5. Semantics of multicore programs. Parallel Exposure,description,

http://www2.imm.dtu.dk/courses/02158/transsys_slides.pdf

programming design patterns. StreamIt
language. Parallelizing compilers.

explanation,
discussion of case
studies

6. Semantics of resources usage in sequential,
concurrent and parallel paradigms. Memory
usage models.

Exposure,description,
explanation,
discussion of case
studies

7. Semantics of resources usage in sequential,
concurrent and parallel paradigms. Memory
usage models. CPU usage models. Battery
usage models.

Exposure,description,
explanation,

8. Static analysis. Principles.Dataflow
analysis.Type-based analysis

Exposure,description,
explanation

9. Static analysis. Symbolic execution. Abstract
interpretation

Exposure,description,
explanation,
discussion of case
studies

10. Automatic verification. Hoare logic.
Separation logic. Modular verification

Exposure,description,
explanation,
discussion of case
studies

11. Automatic verification. Theory solvers in
SMT. Invariant inference

Exposure,description,
explanation,
discussion of case
studies

12. Analysis and verification of memory usage.
Memory models. Shape analysis. Type based
methods. Separation logic methods.

Exposure,description,
explanation,
discussion of case
studies

13. Analysis and verification of cpu usage. Cost
analysis. Loop invariants.

Exposure,description,
explanation,
discussion of case
studies

14. Analysis and verification of battery usage.
Energy-aware programming techniques.
Approximate computations. Techniques to control
the battery usage

Exposure,description,
explanation,
discussion of case
studies

Bibliography
1. 1.Benjamin Pierce: Foundational Calculi for Programming Languages, CRC

Handbookof Computer Sc and Engineering, 1995.

2.Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and

Peter Hawkins. An overview of the saturn project. In PASTE,pages 43--48, 2007.

3.Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Arecognition algorithm for
pushdown store systems.In Proceedings of the 1968 23rd ACM national conference,
pages 597--604, New York,NY, USA, 1968. ACM Press.

4.Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob

Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah

Ustuner.Thorough static analysis of device drivers.In EuroSys '06: Proceedings of the

2006 EuroSys conference, pages 73--85, New York,NY, USA, 2006. ACM Press.

5.Bruno Blanchet, Patrick Cousot, Radhia Cousot, J\'{e}rome Feret, Laurent

Mauborgne, Antoine Min\'{e}, David Monniaux, and Xavier Rival.

A static analyzer for large safety-critical software.In PLDI '03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 196--207, New York, NY, USA, 2003.ACM Press.

6.Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and

K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.

In FMCO, volume 4111 of Lecture Notes in Computer Science, pages 364--387, 2005.

7.Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.The spec\# programming
system: An overview.In CASSIS, volume 3362 of Lecture Notes in Computer Science,
pages 49--69, 2005.

8.Randal E. Bryant.Symbolic boolean manipulation with ordered binary-decision
diagrams.ACM Comput. Surv., 24(3):293--318, 1992.

9.Patrick Cousot and Radhia Cousot.Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.In POPL '77:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium onPrinciples of
programming languages, pages 238--252, New York, NY, USA, 1977.ACM Press.

10.Patrick Cousot and Radhia Cousot.Systematic design of program analysis
frameworks.In POPL '79: Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium onPrinciples of programming languages, pages 269--282, New York, NY,
USA, 1979.ACM Press.

11.Patrick Cousot and Nicolas Halbwachs.Automatic discovery of linear restraints
among variables of a program.In POPL, pages 84--96, 1978.

12.Venkatesan T. Chakaravarthy.New results on the computability and complexity of
points--to analysis.In POPL '03: Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium onPrinciples of programming languages, pages 115--125, New York, NY,
USA, 2003.ACM Press.

13.Manuvir Das.Unification-based pointer analysis with directional assignments.In
PLDI '00: Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, pages 35--46, New York, NY, USA, 2000. ACM

Press.

14.Robert DeLine and Manuel Fahndrich.Enforcing high-level protocols in low-level

software.In PLDI, pages 59--69, 2001.

15.David Detlefs, Greg Nelson, and James B. Saxe.Simplify: a theorem prover for
program checking.J. ACM, 52(3):365--473, 2005.

16.Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken.Flow-insensitive
type qualifiers.ACM Trans. Program. Lang. Syst., 28(6):1035--1087, 2006.

17.Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, andEmmanuel Geay.

Effective typestate verification in the presence of aliasing.In ISSTA '06: Proceedings of
the 2006 international symposium on Software testingand analysis, pages 133--144,
New York, NY, USA, 2006. ACM Press.

18.Sumit Gulwani and Ashish Tiwari.Combining abstract interpreters.In PLDI '06:
Proceedings of the 2006 ACM SIGPLAN conference on Programming language design
and implementation, pages 376--386, New York, NY, USA, 2006.ACM Press.

19.Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang.Modular checking for
buffer overflows in the large.In ICSE '06: Proceeding of the 28th international
conference on Software engineering,pages 232--241, New York, NY, USA, 2006.
ACM Press.

20.Ben Hardekopf and Calvin Lin.The ant and the grasshopper: fast and accurate
pointer analysis for millions of lines of code.In PLDI '07: Proceedings of the 2007
ACM SIGPLAN conference on Programminglanguage design and implementation,
pages 290--299, New York, NY, USA, 2007.ACM Press.

21.C. A. R. Hoare.An axiomatic basis for computer programming.Commun. ACM,
12(10):576--580, 1969.

22.David Hovemeyer, Jaime Spacco, and William Pugh.Evaluating and tuning a static
analysis to find null pointer bugs.In PASTE '05: Proceedings of the 6th ACM
SIGPLAN-SIGSOFT workshop onProgram analysis for software tools and
engineering, pages 13--19, New York, NY,USA, 2005. ACM Press.

23.John Kodumal and Alex Aiken.The set constraint/cfl reachability connection in
practice.In PLDI '04: Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation, pages 207--218, New York, NY,
USA, 2004.ACM Press.

24.James C. King and Robert W. Floyd.An interpretation oriented theorem prover over
integers.In STOC '70: Proceedings of the second annual ACM symposium on Theory
of computing, pages 169--179, New York, NY, USA, 1970. ACM Press.

25.Gary A. Kildall.A unified approach to global program optimization.In POPL '73:
Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium onPrinciples of

programming languages, pages 194--206, New York, NY, USA, 1973.ACM Press.

26.James C. King.Symbolic execution and program testing.Commun. ACM,
19(7):385--394, 1976.

27.Xavier Leroy.Java bytecode verification: An overview.In CAV, volume 2102 of
Lecture Notes in Computer Science, pages 265--285, 2001.

28.William Landi and Barbara G. Ryder.Pointer-induced aliasing: a problem taxonomy.

In POPL '91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 93--103, New York, NY, USA, 1991.
ACM Press.

29.Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin,Dzintars
Avots, Michael Carbin, and Christopher Unkel.Context-sensitive program analysis as
database queries.In PODS '05: Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 1--12, New
York, NY, USA, 2005.ACM Press.

30.Robert Muth and Saumya Debray.On the complexity of flow-sensitive dataflow
analyses.In POPL '00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium
onPrinciples of programming languages, pages 67--80, New York, NY, USA, 2000.
ACM Press.

31.Antoine Min{\'e}.A new numerical abstract domain based on difference-bound
matrices.In PADO, pages 155--172, 2001.

32.Thomas Reps, Susan Horwitz, and Mooly Sagiv.Precise interprocedural dataflow
analysis via graph reachability.In POPL '95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium onPrinciples of programming languages, pages 49--61, New
York, NY, USA, 1995. ACMPress.

33.Manu Sridharan and Rastislav Bod\'{\i}k.Refinement-based context-sensitive
points-to analysis for java.In PLDI, pages 387--400, 2006.

34.Alfred Tarski:A lattice-theoretic fixpoint theorem and its applications, Pacific J.
Mathematics, 5,pages 285--309, 1955.

35. Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of
ProgramAnalysis, Springer, 1999.

8.2 Seminar / laboratory Teaching methods Remarks

1. (2nd week) First Project: Use K-framework
to describe the semantics of a sequential
program

Use practical tools to
implement a small
project

Seminar is organized
as a total of 7 hours –
2 hours every second
week

2. (4th week)Second Project: Use K-
framework to describe the semantics of a
concurrent program

Use practical tools to
implement a small
project

3. (6th week) Third project:Use Hip/Sleek to
verify sequential programs.

Use practical tools to
implement a small
project

4. (8th week) Forth project:Use Verifast to
verify concurrent programs

Use practical tools to
implement a small
project

5. (10th week) Fifth project:Use Hip/Sleek to
verify the memory usage

Use practical tools to
implement a small
project

6. (12th week) Sixth project: Use Hip/Sleek to
verify cpu and battery usage

Use practical tools to
implement a small
project

7. (14th week) Evaluation of the projects
Bibliography

Students will use the following tools: K-framework, Hip/Sleek and Verifast

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

 The course respects the IEEE and ACM Curriculla Recommendations for Software
Engineering studies;

 The content of the course is considered by the software companies as important for software
development skills

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in

the grade (%)
10.4 Course - know the basic principle of

the domain;
- apply the course concepts
- problem solving

Written exam 40.00%

10.5 Seminar/lab
activities

– be able to implement
course concept

-Practical examination 60.00%

10.6 Minimum performance standards
 At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date Signature of course coordinator Signature of seminar coordinator

................ Assoc. Prof. PhD. Ing. Florin CRACIUN Assoc. Prof. PhD. Ing. Florin CRACIUN

Date of approval Signature of the head of department

...…............................

