SYLLABUS

1.Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics and Computer Science of the Hungarian
	Line
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Analiza datelor si modelare
Qualification	

2. Information regarding the discipline

2.1 Name of the	disc	ipline	Me	taheuristic Methods			
2.2 Course coordinator Prof. PhD. Dumitru Dumitrescu							
2.3 Seminar coordinator Prof. PhD. Dumitru Dumitrescu							
2.4. Year of	2	2.5	1	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	_

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1 sem
		course		seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					7
Evaluations					20
Other activities:					-

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	knowledge of basic algorithms, average programming skills, basic mathematical knowledge

5. Conditions (if necessary):

5.1. for the course	

6. . Specific competencies acquired

Profess ional compet encies	 basic metaheuristic methods analyzing hard optimization problems applying metaheuristic methods to real world problems
Transv ersal compet encies	 analytical thinking problem solving competences

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	 provide an introduction to the field studied.
discipline	 the basic notion, techniques and algorithms.
7.2 Specific objective of the	 ability to analyze hard optimization problems
discipline	 application of metaheuristics to real world problems
	 ability to develop new heuristic algorithms.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction	description, explanation, examples	
2. Efficiency of metaheuristics	description, explanation, examples, debate, dialogue	
3-4. Single state methods: hill climbing, local search methods	description, explanation, examples, dialogue	
5. Simulated Annealing	description, explanation, examples, dialogue	
6. Tabu Search	description, explanation, examples, dialogue	
7-8 . Population based methods: differential evolution, genetic algorithms	description, explanation, examples, dialogue	
9-10. Swarm Intelligence: Ant	description, explanation, examples,	

colony, Bee colony, Particle Swarm optimization techniques	dialogue	
10-13. Multiobjective Optimization: multiobjective optimization problem, non-dominance, weighted sum methods, evolutionary multiobjective optimization.	description, explanation, examples, debate, dialogue	
14. Comparison of metaheuristics	description, explanation, examples, debate, dialogue	

8.1 Course	Teaching methods	Remarks
Week 1: Introduction	 description, explanation, examples 	
Week 2: Efficiency of metaheuristics	 description, explanation, examples, debate, dialogue 	
Week 3-4: Single state methods: hill climbing, local search methods	 description, explanation, examples, dialogue 	
Week 5: Simulated Annealing	 description, explanation, examples, dialogue 	
Week 6: Tabu Search	 description, explanation, examples, dialogue 	
Week 7-8: Population based methods: differential evolution, genetic algorithms	 description, explanation, examples, dialogue 	
Week 9-10: Swarm Intelligence: Ant colony, Bee colony, Particle Swarm optimization techniques	 description, explanation, examples, dialogue 	
Week 11-13: Multiobjective Optimization: multiobjective optimization problem, non- dominance, weighted sum methods, evolutionary multiobjective optimization.	 description, explanation, examples, debate, dialogue 	
Week 14: Comparison of metaheuristics	description, explanation, examples, debate,	

dialogue

Bibliography

Sean Luke: *Essentials of Metaheuristics*, 2013, Freely available for download at http://cs.gmu.edu/~sean/book/metaheuristics/

Stefan Edelkamp, Peter Norvig: Heuristic Search: Theory and Applications, Elsevier, 2011.

Fred Glover, Gary A. Kochenberger: *Handbook of Metaheuristics*, Springer, 2010.

El-Ghazali Talbi: Metaheuristics - From Design to Implementation, Wiley, 2009.

Zbigniew Michalewicz, David B. Fogel: How to Solve It: Modern Heuristics, Springer, 2004.

Holger H. Hoos , Thomas Stützle: Stochastic Local Search, Morgan Kaufmann, 2005.

Sadiq M. Sait, Habib Youssef: *Iterative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems*, Wiley, 2000.

Christos H. Papadimitiou, Kenneth Steiglitz: *Combinatorial Optimization.*, Dover Publications, 2nd edition, 1998.

K. Deb: Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Real-world applications. Benchmarks instances	discussion, dialogue	
2. Problem representation, Local search methods	description, individual	
	work, discussion,	
	dialogue	
3. Simulated Annealing	Description, discussion,	
	individual work, dialogue	
4. Tabu search	Description, discussion,	
	individual work, dialogue	
5. Genetic Algorithms	description, discussion,	
	individual work, dialogue	
6. Project presentations, discussion	description, discussion,	
	individual work, dialogue	

Bibliography

Sean Luke: *Essentials of Metaheuristics*, 2013, Freely available for download at http://cs.gmu.edu/~sean/book/metaheuristics/

Stefan Edelkamp, Peter Norvig: Heuristic Search: Theory and Applications, Elsevier, 2011.

Fred Glover, Gary A. Kochenberger: *Handbook of Metaheuristics*, Springer, 2010.

El-Ghazali Talbi: Metaheuristics - From Design to Implementation, Wiley, 2009.

Zbigniew Michalewicz, David B. Fogel: *How to Solve It: Modern Heuristics*, Springer, 2004.

Holger H. Hoos, Thomas Stützle: Stochastic Local Search, Morgan Kaufmann, 2005.

Sadiq M. Sait, Habib Youssef: *Iterative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems*, Wiley, 2000.

Christos H. Papadimitiou, Kenneth Steiglitz: *Combinatorial Optimization.*, Dover Publications, 2nd edition, 1998.

K. Deb: Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is based on the texbook: Essentials of Metaheuristics, available online on the website of George Mason University.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the basic principle of the domain;apply the course conceptsproblem solving	Written exam	50.00%
10.5 Lab activities	-be able to implement course concepts and algorithms -be able to make a practical project during the semester	Practical project	50.00%

10.6 Minimum performance standards

• At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date Signature of course coordinator

Prof. dr. Dumitru Dumitrescu

Date of approval

Signature of seminar coordinator

Prof. dr. Dumitru Dumitrescu

Signature of the head of department Conf. dr. Szenkovits Ferenc