SYLLABUS

1.Information regarding the programme

4 4 XX 1 1 1 1 1 1 1	
1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics and Computer Science of the Hungarian
	Line
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Analysis and Modeling
Qualification	

2. Information regarding the discipline

2.1 Name of the d	iscip	oline	Ev	olutionary Algorithm	IS		
2.2 Course coordinator Lect. dr. Gaskó Noémi							
2.3 Seminar coordinator Lect. dr. Gaskó Noémi							
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1 sem
		course		seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					7
Evaluations					20
Other activities:					-
3.7 Total individual study hours 80					
3.8 Total hours per semester		150			
3.9 Number of ECTS credits 7					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary) -

5.1. for the course	
5.2. for the seminar /lab	

activities	•	Room with computers as needed; high level programming language
		environment

6. Specific competencies acquired

Profes sional compe tencies	• Knowledge, understanding and use of basic concepts of GAs
Trans versal compe tencies	 Ability to apply GAs to different real life problems Ability to model phenomena using GAs

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	• an introduction to the field studied.
discipline	• the basic notion, techniques and algorithms.
	the background for advanced courses
7.2 Specific objective of the	• application of GAs
discipline	11

8. Content

8.1 Course	Teaching methods	Remarks
• Week 1: Principles of evolutionary computation. Basic and related models. Structure of an evolutionary algorithm	 Interactive exposure Explanation Conversation 	
• Week 2: Genetic algorithms. Problem representation and fitness function. Canonical genetic algorithm.	 Interactive exposure Explanation Conversation 	
 Week 3: Selection – selection pressure; takeover time; standard schemes. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
Week 4: Selection – proportional selection; premature convergence; scaling mechanisms; rank-based selection	Interactive exposureExplanation	

 Week 5: Selection – binary tournament; q- tournament; elitism; steady state EAs; Michalewicz selection; Boltzmann selection 	 Conversation Didactical demonstration Interactive exposure Explanation Conversation
• Week 6: Variation operators for binary encoding;Variation operators for real-valued encoding	 Interactive exposure Explanation Conversation
• Week 7: Hybridisation – specific representation; hybridisation	 Interactive exposure Explanation Conversation
• Week 8: Parameter setting and adaptive GAs; adaptive fitness of a search operator	 Interactive exposure Explanation Conversation
• Week 9: Adaptive representation –messy genetic algorithms, delta coding; diploidic representation	 Interactive exposure Explanation Conversation
• Week 10: Population models and parallel implementations - niching methods; fitness sharing; island and stepping stone models;	 Interactive exposure Explanation Conversation
• Week 11: Differential evolution – introduction, parameter settings, variants	 Interactive exposure Explanation Conversation Case studies
• Week 12: Evolution strategies – introduction. (1+1) strategy; standard mutation; Cauchy perturbations	 Interactive exposure Explanation Conversation
 Week 13: Evolutionary programming – sequential machine model; function optimization; Cauchy perturbation. 	 Interactive exposure Explanation Conversation

• Week 14: Search and optimization using genetic algorithms	Interactive exposureConversation	

Bibliography

Eiben A & Smith JE, Introduction to Evolutionary Computing. Springer-Verlag 2010.

David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley; 1989.

David E. Goldberg, The Design of Innovation: Lessons from the competent genetic algorithms. Springer-Verlag; 2002.

Sean Luke, Essentials of Metaheuristics. Freely available for download at http://cs.gmu.edu/~sean/book/metaheuristics/

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 1992.

Dumitrescu, D., B Lazzerini, Evolutionary Computation, CRC Press, New York, Boca Raton, 2000

Dumitrescu, D., Principiile Inteligentei artificiale, Editura Albastra, Cluj,2000.

Dumitrescu, D., Algoritmi genetici si strategii evolutive. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj,2000.

Deb, K., Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Implementation of some genetic operators and the analysis of their performance	 Interactive exposure Explanation Conversation 	The laboratory is structured as 2 hours, classes every second week -2 laboratories for this activity
2. Each student chooses a different type of problem (e.g. the traveling salesman problem), and implements three appropriate evolutionary techniques for the selected problem	 Interactive exposure Explanation Conversation 	-3 laboratories
3. Parameter setting, analysis of the implemented algorithms	 Interactive exposure Explanation Conversation 	
4. Project presentation, documentation	Interactive exposureConversation	

Bibliography

Eibern A & Smith JE, Introduction to Evolutionary Computing. Springer-Verlag 2010.

David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley; 1989.

David E. Goldberg, The Design of Innovation: Lessons from the competent genetic algorithms. Springer-

Verlag; 2002.

Sean Luke, Essentials of Metaheuristics. Freely available for download at <u>http://cs.gmu.edu/~sean/book/metaheuristics/</u>

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 1992.

Dumitrescu, D., B Lazzerini, Evolutionary Computation, CRC Press, New York, Boca Raton, 2000

Dumitrescu, D., Principiile Inteligentei artificiale, Editura Albastra, Cluj,2000.

Dumitrescu, D., Algoritmi genetici si strategii evolutive. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj,2000.

Deb, K., Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered important in the introduction to Genetic Algorithms

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	50.00%	
10.5 Lab activities	-be able to implement course concepts and algorithms -be able to make a practical project during the semester	Practical project	50.00%	
10.6 Minimum performance standards				
• At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.				

Date	Signature of course coordinator Lect. dr. Gaskó Noémi	Signature of seminar coordinator Lect. dr. Gaskó Noémi
Date of approval		Signature of the head of department Conf. dr. Szenkovits Ferenc