SYLLABUS

it into muton regularing the programme				
1.1 Higher education	Babeş Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Computer Science/ Intelligent Systems			
	Computer Science, Interngent Systems			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Knowledge Based Systems and Language Technology							
2.2 Course coordinator Lecturer Ph.D. Lupea Mihaiela							
2.3 Seminar coordinator				Lecturer Ph.D. Lupea Mihaiela			
2.4. Year of	1	2.5	2	2.6. Type ofexam2.7 Type ofcompulsory			
study		Semester		evaluation discipline			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					14
Evaluations					30
Other activities: individual project					30
3.7 Total individual study hours 158					•

5.7 Total mai radai staay nouis	100
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Machine learning
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

cies	• Demonstrate advanced modeling skills for economic, industrial, scientific phenomena and processes, by using fundamental mathematical, statistical, and computer science knowledge
Professional competencies	• Demonstrate advanced skills to analysis, design, and construction of software systems, using a wide range of hardware / software platforms, programming languages and environments, and modeling, verification and validation tools
onal	• Ability to address complex real-world problems by nonconventional techniques
lessi	• Ability to identify suitable metaheuristics and use them for solving complex problems
Pro	• Ability to teach students in high schools computer science concepts and theories, provided that the holder of the dissertation diploma owns a graduation certificate of the pedagogical education module.
	Etic and fair behavior, committment to professional deontology
Transversal competencies	 Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the basic principles, technologies and applications of Language Technology (LT) and Knowledge based systems. To understand the current state of the art in LT in order to realize original research in LT.
7.2 Specific objective of the discipline	• Apply and use formal language concepts (grammars, parsing), statistic models (HMM), artificial intelligence algorithms (clustering, machine learning) and techniques (unsupervised, supervised) to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, information extraction, anaphora resolution) in Natural Language Processing domain.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1. Natural Language Processing (NLP): stages, domains, applications.	Exposure: description, explanation, examples, debate, dialogue	
 Course 2. -WordNet: knowledge structure, semantic relations, lexical relations, applications, interfaces; corpora. - Part of speech tagging. 	Exposure: description, explanation, examples, debate, dialogue	

Course 3. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level construction;	explanation, examples,	
- Cocke-Kasami-Yonger (CKY) algorithm;	debate, dialogue	
Course 4. Statistical parsing	Exposure: description,	
-Probabilistic Context-Free Grammars (PCFG);	explanation, examples, debate, dialogue	
- Probabilistic CKY (Cocke-Kasami-Yonger) parsing of	debate, dialogue	
PCFGs.		
Course 5. Hidden Markov Model (1)	Exposure: description, explanation, examples,	
- Markov chains, Hidden Markov Model(HMM);	debate, dialogue	
- three canonical problems associated with HMM	debute, dialogue	
- the forward algorithm; the Viterbi algorithm		
Course 6. Hidden Markov Model (2)	Exposure: description,	
- the Baum-Welch algorithm for HMM;	explanation, examples, debate, dialogue	
- applications to part-of-speech tagging.	debate, dialogue	
Course 7. Information extraction	Exposure: description,	
- Tasks, applications, tools	explanation, examples, debate, dialogue	
Course 8. Word Sense Disambiguation (1)	Exposure: description,	
- unsupervised (by clustering);	explanation, examples,	
- dictionary based approach (Lesk, Yarowsky, bilingual	debate, dialogue	
dictionaries).		
Course 9. Word Sense Disambiguation (2)	Exposure: description,	
- machine learning approach;	explanation, examples, debate, dialogue	
- the bootstraping algorithm		
Course 10. Document summarization	Exposure: description, explanation, examples,	
- aproaches based on clustering, graphs and Formal Concept Analysis	debate, dialogue	
Course 11. Anaphora resolution (1)	Exposure: description,	
hard constraints and preferencesHobb's algorithm, Lapin and Lease algorithm	explanation, examples, debate, dialogue	
- 11000 s argoritini, Lapin and Lease argoritini	debate, dialogue	
Course 12. Anaphora and co-reference resolution (2)	Exposure: description,	
- Mitkov's algorithm	explanation, examples,	
- tools for co-reference resolution	debate, dialogue	
Course 13. First-order logic and description logics for	Exposure: description,	
natural language processing.	explanation, examples,	
Course 14.	debate, dialogue Debate, dialog	
Students' presentations of the practical project.	Debaie, dialog	

Bibliography

1. J.ALLEN : Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.

2. E. CHARNIAK: Statistical language learning, MIT press, 1996.

3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University,1994.

4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.

5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.

6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.

7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.

8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.

9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.

10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Working with WordNet and Romanian WordNet	Explanation,	The seminar/lab is
	dialogue, case studies	structured as 2 hours
		classes every second week
2. Students' presentations of a NLP domain and a	Dialogue, debate	
corresponding tool		
3. Working with dedicated parsers and taggers	Explanation,	
(Stanford, CST tools, Racai tools)	dialogue, case studies	
4. Students' presentations of the theoretical paper	Dialogue, debate	
5. Working with dedicated tools for information	Explanation,	
extraction	dialogue, case studies	
6. Working with dedicated tools for anaphora and	Explanation,	
co-reference resolution	dialogue, case studies	
7. Students' presentations of the practical project.	Dialogue, debate	
Bibliography		

1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html

2. Resurse lingvistice in limba romana: <u>www.racai.ro</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the 10.3
		methods	grade (%)
10.4 Course	 know the theoretical concepts of the domain; apply the course methods, algorithms in problem solving 	Written exam	40%
10.5 Seminar/lab activities	- know to write an overview of a specific domain	Presentation of a NLP domain and a corresponding tool;	15%
	- know to synthesize and compare different approaches/results of the same studied subject.	Theoretical paper based on recent research papers in NLP domain;	20%

10. Evaluation

	- be able to implement course algorithms	Practical project - implementation of a NLP tool based on the studied methods	25%	
10.6 Minimum performance standards				
➢ At least grade 5 (from a scale of 1 to 10) at all four evaluation stages.				

Date	Signature of course coordinator	Signature of seminar coordinator
9.05.2014	Lecturer Ph.D. Lupea Mihaiela	Lecturer Ph.D. Lupea Mihaiela

Date of approval

Signature of the head of department

.....

Prof. PhD. Pârv Bazil