1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Applied Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Special Chapters of Numerical Analysis									
2.2 Course coordinator Lecturer Ph.D. Teodora Catinas									
2.3 Seminar coordinator				Lecturer Ph.D. Teodora Catinas					
2.4. Year of	1	2.5	2	2.6. Type of	Ε	2.7 Type of	Compulsory		
study		Semester		evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					33
Tutorship					20
Evaluations					30
Other activities:					-
3.7 Total individual study hours		133			
3.8 Total hours per semester175					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•
4.2. competencies	• Knowledge of some classical and modern procedures of Numerical Analysis and the ability to work with them. Improvment of programming skills in MATLAB for implementing numerical algorithms.

7

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	• Laboratory with computers.

6. Specific competencies acquired

Professional competencies	• Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics.
Transversal competencies	 Ability to use mathematical software and advanced methods of numerical analysis and programming for numerical solving of problems. Ability to model and analyze from a mathematical point of view real processes from other sciences, economics and engineering.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of some classical and modern concepts of Numerical Analysis and the improvment of the capacity of using them in problems. Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Consolidation of theoretical and practical knowledge about the basic numerical algorithms Acquire some theoretical and practical knowledge regarding classical and modern procedures of approximation and interpolation for different types of domains, numerical integration methods, numerical solving of linear/nonlinear systems of equations and differential equations. Ability to apply numerical algorithms to solve practical and real life problems.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introductive notions: linear spaces, spaces of	Exposure: description,	
functions, Peano type theorems.	explanation, examples.	
2. Classical interpolation methods. Study of the	Exposure: description,	
interpolation error.	explanation, examples.	
3. Polynomial spline interpolation operators.	Exposure: description,	
Spline interpolation operators of Lagrange	explanation, examples,	
type.	proofs.	
4. Spline interpolation operators of Hermite and	Exposure: description,	
Birkhoff type. Study of the interpolation error.	explanation, examples,	
	proofs.	
5. Interpolation operators on rectangular domains.	Exposure: description,	
Exemples of interpolation operators for square.	explanation, examples,	

	proofs, dialogue.
6. Interpolation operators on simplex domains.	Exposure: description,
Exemples of interpolation operators for	explanation, examples,
triangle.	proofs, dialogue.
7. Interpolation operators on arbitrary domains.	Exposure: description,
Univariate Shepard interpolation.	explanation, examples.
8. Bivariate Shepard interpolation.	Exposure: description,
	explanation, examples.
Partial written exam.	Partial evaluation.
9. Numerical differentiation and integration.	Exposure: description,
Newton-Cotes quadrature formulas. Romberg's algorithm. Adaptive quadratures	explanation, examples.
formulas. General quadrature formulas.	
10. Gauss type quadrature formulas.	Exposure: description,
Chebyshev type quadrature formulas.	explanation, examples,
encoysnev type quadratic formalas.	proofs, dialogue.
11. Numerical methods for solving nonlinear	Exposure: description,
equations in R: one-step methods (Newton	explanation, examples.
(tangent) method) and multi-step methods	
(secant, bisection and false position methods).	
12. Inverse interpolation of Lagrange, Hermite si	Exposure: description,
Birkhoff type.	explanation, examples,
	proofs.
13. Numerical methods for solving nonlinear	Exposure: description,
systems: succesive approximation method and	explanation, examples,
Newton's method.	proofs, dialogue.
14. Numerical methods for solving differential	Exposure: description,
equations: Taylor interpolation method, Euler	explanation, examples,
and Runge-Kutta methods. Bibliography	proofs, dialogue.
	itaș, Analiză Numerică și Teoria Aproximării, vol. III,
Ed. Presa Univ. Clujeană, 2002;	itaş, maiiza ivamerica şi reoria mproximarii, vol. 111,
2. R. L. Burden, J. D. Faires, <i>Numerical Analysis</i> , P	WS Publishing Company, 1985.
3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză nur	
4. Gh. Coman, T. Cătinaș, și alții, Interpolation oper	
5. Gh. Coman, I. Chiorean, T. Cătinaș, Numerical A	nalysis. An Advanced Course, Ed. Presa Univ.
Clujeană, 2007.	
6. W. Gautschi, Numerical Analysis. An introduction	
7. A. Kharab, R. B. Guenther, <i>An introduction to nu</i>	merical methods. A Matlab approach,
Taylor&Francis Group, 2006.	
8. R. Plato, <i>Concise Numerical Mathematics</i> , Amer	
9. D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbit Ed. Presa Univ. Clujeană, 2001;	as, Anuliza ivamerica și Teoria Aproximarii, vol. l,
10. D.D. Stancu, Gh. Coman, P. Blaga, <i>Analiză Nume</i>	prică și Teoria Aproximării vol II Ed Presa Univ
Clujeană, 2002;	
11. R. Trîmbitaş, <i>Numerical Analysis</i> , Ed. Presa Univ	v. Clujeană, 2007.
8.2 Laboratory	Teaching methods Remarks
1. Introductory examples and problems in	Explanation, dialogue,
Matlab.	practical examples.
2. Applied problems to polynomial spline	Explanation, dialogue,
interpolation.	examples.
3. Computation of some tensorial product and	Explanation, dialogue,
boolean sum operators for square and triangle.	examples.
Graphical representations.	

4.	Exemples of univariate and bivariate Shepard	Explanation, dialogue,
	interpolation operators. Graphical	examples.
	representations.	
5.	Exemples and applied problems for Newton-	Explanation, dialogue,
	Cotes quadratures formulas, Romberg's	examples.
	algorithm and adaptive quadratures formulas.	
6.	Applied problems to Gauss type quadrature	Explanation, dialogue,
	formulas.	examples.
7.	Exemples of numerical methods for solving	Explanation, dialogue,
	nonlinear equations and systems.	examples.
	Solving some differential equations using	
	Euler and Runge-Kutta methods. Ending of	
	Euler and Kunge-Kutta methous. Enumg of	
	evaluation for laboratories	
Biblio	0	

- 1 R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 1985.
- 2 A. Kharab, R. B. Guenther, *An introduction to numerical methods. A Matlab approach*, Taylor&Francis Group, 2006.
- 3 R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principles of Numerical Analysis; apply the course	Partial written exam.	35%
	concepts - problem solving	Final written exam	35%
10.5 Seminar/lab activities	 be able to implement course concepts and the numerical algorithms apply techniques for different practical problems 	Evaluation and continuous observations during the semester.	30%
10.6 Minimum performance	e standards		
 At least grade 5 (free 	om a scale of 1 to 10) at writt	en exam and laboratory work.	

Date

Signature of course coordinator

Signature of seminar coordinator

30.04.2014

Date of approval

Signature of the head of department