SYLLABUS

1.1 Higher education	Babes Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Software Engineering			
Qualification				

1. Information regarding the program

2. Information regarding the discipline

2.1 Name of the disciplineDomain Specific Languages (DSLs)								
2.2 Course coordinator conf. dr. Dan CHIOREAN								
2.3 Seminar coordinatorconf. dr. Dan CH				conf. dr. Dan CHIOI	REAN	N		
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	Opt	
study		Semester		valuation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	12/12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					10
Evaluations				20	
Other activities:				-	
3.7 Total individual study hours		102			

3.7 Total individual study hours	102
3.8 Total hours per semester	150
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	OOP, Functional Programming, Compiler Theory courses
4.2. competencies	Experience in object oriented programming as well as basic knowledge about functional programming and modeling.

5. Conditions (if necessary)

5.1. for the course	beamer
5.2. for the seminar /lab	Laboratory with EMF and MPS
activities	

6. Specific competencies acquired

	te competencies acquirea
	• C2.1 A solid overview of the state of the art of DSLs.
sional encies	• C2.3 Understanding and using the most used DSLs tools workbench
Professional competencie	• C2.2 Understanding similarities and differences between internal and external DSLs
P1	• C2.5 Abilities to design, implement and use DSLs in Software Engineering.
sal	• CT1 Understanding both the advantages and the price to pay when using DSLs compared with classical methods of designing, implementing and testing software
Transversal competencies	• CT3 Acquiring concepts, techniques and technologies supporting specialists in managing the rapidly changing of requirements and technologies

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Convincing students that between modeling and programming the similarities are more numerous than the differences Teaching students the modern modeling techniques
7.2 Specific objective of the discipline	 Learning students about designing, specifying, testing and using DSLs in different domains Presenting and working with the best DSL language workbenches

8. Content

8. Content		
8.1 Course	Teaching methods	Remarks
 Introduction to DSLs 	• Interactive exposure	
	Explanation	
	Conversation	
	• Didactical	
	demonstration	
Conceptual Foundations	• Interactive exposure	
	Explanation	
	Conversation	
	Didactical	
	demonstration	
Design Dimensions	• Interactive exposure	
	Explanation	
	Conversation	
	Didactical	
	demonstration	
Fundamental Paradigms & Process	Interactive exposure	
Issues	Explanation	
	Conversation	
	Didactical	
	demonstration	

Concrete and Abstract Syntax	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
Scoping and Linking	• Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
Constraints	• Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
Type Systems	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
Transformation and Generation	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
Building Interpreters	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
IDE Services	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
Testing DSLs	Interactive exposure
	Explanation
	Conversation
	Conversation

Bibliography

Markus Voelter - DSL Engineering - Designing, Implementing and Using Domain-Specific Languages <u>http://www.dslbook.org</u>

Martin Fowler - Domain Specific Languages - Addison-Wesley 2011

Jack Greenfield, Keith Short, Steve Cook, Stuart Kent, John Crupi - Software Factories: Assembling Applications with Patterns, Models, Frameworks, and Tools - Wiley Publishing 2004

Tony Clark, Paul Sammut, James Willans - APPLIED METAMODELLING A FOUNDATION FOR LANGUAGE DRIVEN DEVELOPMENT, SECOND EDITION - Ceteva Copyright - 2008

8.2 Seminar / laboratory	Teaching methods	Remarks
The MPS editor overviewThe entities of the language	Explanation, Dialogue, debate, case studies,	The seminar is structured as 2 hours
• The entities of the language	examples, proofs	classes at each two weeks period
Language Combination with the UI	Explanation, Dialogue,	
Language	debate, case studies,	
Language Extension with Expression	examples, proofs	
Blocks		
Language Reuse with the persistence	Explanation, Dialogue,	
Languages	debate, case studies,	
• Language reuse with the RBAC	examples, proofs	
Languages		
Language Embedding with the UI	Explanation, Dialogue,	
Validations/Expression Languages	debate, case studies,	
MPS Annotations	examples, proofs	
• Integration with EMF and Other EMF	Explanation, Dialogue,	
Editors	debate, case studies,	
	examples, proofs	
Creating projects with Xtext	Explanation, Dialogue,	
	debate, case studies,	
	examples, proofs	
Bibliography		

MPS; Documents and Live Demos – online at:

http://www.jetbrains.com/mps/documentation/index.html#MPS_Use_Cases_and_Other_Related_Reading

Xtext 2.5 Documentation – online at:

http://www.eclipse.org/Xtext/documentation/2.5.0/Xtext%20Documentation.pdf

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

10. Evaluation

Type of activity	10.1 Evaluation Criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic concepts of DSLs understand the true relationship between modeling and programming knowledge of designing, specifying, testing and using DLSs 	Written exam	30%

10.5 Seminar/lab & project activities	• be able to understand and extend the examples realized by tools makers, to design, specify test and use a DSL	Practical examination and continuous observation	70%
---------------------------------------	--	--	-----

Date	Signature of course coordinator	Signature of seminar coordinator
04/05/2014	Conf. Dr. Dan CHIOREAN	Conf. Dr. Dan CHIOREAN
Date of approval		Signature of the head of department
		Prof. Dr. Bazil PARV