SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Computational Models for Embedded Systems							
2.2 Course coor	2.2 Course coordinator PhD Lecturer Andreea Vescan						
2.3 Seminar coordinator				PhD Lecturer And	reea	Vescan	
2.4. Year of	2	2.5	4	2.6. Type of	Ε	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					72
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					3
Evaluations			4		
Other activities:				0	
3.7 Total individual study hours		139			
3.8 Total hours per semester		175			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	
4.2. competencies	

7

5. Conditions (if necessary)

5.1. for the course	Video projector, Internet access
5.2. for the seminar /lab	Laboratory with computers; model checking tools; LabView; FSM/PN
activities	tools.

6. Specif	ic competencies acquired
	• Assimilation of mathematical concepts and formal models to understand, verify and
S =	validate software systems;
ona ncie	• Analysis, design, and implementation of software systems
Professional competencies	• Proficient use of methodologies and tools specific to programming languages and software
mp	systems
P S	Organization of software production processes.
	Etic and fair behavior, committment to professional deontology
	• Team work capabilities; able to fulfill different roles
S	• Professional communication skills; concise and precise description, both oral and written,
sal sal	of professional results, negociation abilities;
Transversal competencies	• Antepreneurial skills; working with economical knowledge; continuous learning
ans	Good English communication skills.
Tr coi	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 know and understand fundamental concepts of embedded computation; to develop skills in modeling embedded systems with various computational models; to describe and verify safety and liveness properties of the system being modeled.
7.2 Specific objective of the discipline	 will acquire theoretical aspects regarding specification, designing and verification of an embedded system; will acquire theoretical aspects regarding various computational models for embedded systems; will know how to model a system and specify restrictions on functionalities.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction. Model: Why?what? how?	• Interactive exposure	
Types of systems.	• Explanation	
	Conversation	
	• Didactical	
	demonstration	
2. Synchronous models.	• Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstration	
3. Asynchronous models	• Interactive exposure	
	• Explanation	
	Conversation	
	• Didactical	
	demonstration	
4. Requirements and Safety Requirements.	• Interactive exposure	
Model checking	Explanation	

	Conversation
	• Didactical
	demonstration
5. LabView	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
6. Finite State Machines	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
7. Finite State Machines (cont.)	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
8. Petri Nets	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
9. Petri Nets (cont.)	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
10. Dynamical systems	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
11. Timed Models	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
12. Hybrid systems	Interactive exposure
12. 119010 5950115	Explanation
	Didactical demonstration
Dibliggenby	uchionstration

Bibliography

- [1] C. Baier, J.-P. Katoen, Principles of Model Checking, ISBN 978-0-262-02649-9, 2008
- [2] M. Ben-Ari, Principles of the Spin Model Checker, ISBN 978-1-84628-769-5
- [3] Taylor Booth (1967) Sequential Machines and Automata Theory, John Wiley and Sons, New York. Library of Congress Catalog Card Number: 67-25924.
- [4] D. Harel, "Statecharts: A Visual Formalism for Complex Systems", Sci. Comput. Programming 8 (1987), 231-274
- [5] Petri, CA (1966) Communication with automata. DTIC Research Report AD0630125
- [6] Hoare, CAR (2004) (1985), Communicating Sequential Processes, Prentice Hall International

Optional references

Internet resources and conferences

8.2 Seminar / laboratory	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every second
		week.
		The attendance at
		seminars is 75%
		compulsory (4 of 6).
Lab 1 (Report Paper Activity, weeks 1-2)	Presentation,	
Choose Report theme.	Conversation,	
	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 2 (MC Project Activity, weeks 3-4)	Presentation,	
Specifying safety and liveness requirements.	Conversation,	
Model checking.	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 3 (LabView, weeks 5-6)	Presentation,	
LabView -NI myRIO - The Ultimate Student	Conversation,	
Design Tool	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 4 (FSM/PN Project Activity, weeks 7-8)	Presentation,	Delivery date for
Using Finite State Machines or/and PetriNets to	Conversation,	Report Paper Activity
model an embedded system.	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 5 (FSM/PN Project Activity weeks 9-10)	Presentation,	Delivery date for the
Using Finite State Machines or/and PetriNets to	Conversation,	Model Checking
model an embedded system.	Problematizations,	Project Activity
,	Discovery, Individual	
	study, Exercises	
Lab 6 (weeks 11-12)	Presentation,	Delivery date for the
Delivery for Seminar Activities (Report Paper,	Conversation,	FSM/PN Project
Model Checking Project Activity, FSM/PN Project	Problematizations,	Activity
Activity)	Discovery, Individual	-
• /	study, Exercises	

Bibliography

- Students will search and use computational models for embedded systems documentation on the web, using main CS databases for the Report Paper Activity.
- Students will search and use model cheking tools suitable for their Model Checking Project Activity. http://spinroot.com/spin/whatispin.html
- Students will search and use FSM/PN tools suitable for their FSM/PN Project Activity.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad; http://www.seas.upenn.edu/~cis540/ https://inst.eecs.berkeley.edu/~ee249/fa07/ http://www.ict.kth.se/courses/IL2202/ http://users.abo.fi/lmorel/MoCs/ http://bears.ece.ucsb.edu/class/ece253/
- Course content is considered very important by the software companies for improving advance embedded systems modeling and verifying skills.

10.4 Course • The correctness and completeness of the accumulated knowledge of computational models for embedded systems. Written exam (in the regular session) 60% 10.5 Seminar/lab • Class attendance 2 unmotivated absences are 10%	Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
activitiesaccepted, but each unmotivated absence other than those specified above are penalized.• A theoretical research report on a computational model for embedded system topic should be prepared.Resume - paper content: subject, relevance of the paper, results reported, conclusion.10%• Problem definition and specification in JSpin, Show that it is possible to reach the desired end stateEvaluation of the project (modeling, verification properties)10%• Use Finite State Machine or Petri Nets to model the embeddedEvaluation of the project (modeling, I/O, computational model used)10%	10.4 Course	completeness of the accumulated knowledge of computational models	< e	e l
 report on a computational model for embedded system topic should be prepared. Problem definition and specification in JSpin, Show that it is possible to reach the desired end state Use Finite State Machine or Petri Nets to model the embedded Use Finite State to model the embedded 		Class attendance	accepted, but each unmotivated absence other than those specified above	10%
 specification in JSpin, Show that it is possible to reach the desired end state Use Finite State Machine or Petri Nets to model the embedded Evaluation of the project (modeling, I/O, computational model used) 		report on a computational model for embedded system topic should be	subject, relevance of the paper, results reported,	10%
Machine or Petri Nets (modeling, I/O, computational model used)		specification in JSpin, Show that it is possible to reach the desired	(modeling, verification	10%
		Machine or Petri Nets to model the embedded	(modeling, I/O,	10%
10.6 Minimum performance standards	1			
 Each student has to prove that: (s)he acquired an acceptable level of knowledge and understanding of the 	1			

10. Evaluation

 \circ (s)he acquired an acceptable level of knowledge and understanding of the

computational models for embedded systems;

 $\circ~$ (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

• Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date

Signature of course coordinator

Signature of seminar coordinator

30.04.2014

Lect. PhD. Andreea Vescan

Lect. PhD. Andreea Vescan

Date of approval

Signature of the head of department