SYLLABUS

1. Information regarding the programme

1.1 Higher education i	institution Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme	/ Software Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Methodologies for Software Processes							
2.2 Course coordinator Assoc. Prof. Ing. PhD. Florin Craciun							
2.3 Seminar coordinator Assoc. Prof. Ing. PhD. Florin Craciun				n			
2.4. Year of	1	2.5	2	2 2.6. Type of E 2.7 Type of compulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1
		course		seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					70
Tutorship					14
Evaluations					14
Other activities:				-	
2.7.7. 11 11 1 1 1 1		1.50			

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	• None
4.2. competencies	 Basic software development skills

5. Conditions (if necessary)

5.1. for the course	

6. Specific competencies acquired

Profes	Understanding and working with basic concepts in software engineering;
sional	Capability of analysis and synthesis;
compe	 Proficient use of methodologies and tools specific tool software systems
tencie	Organization of software production processes.
S	
Trans	Team work capabilities; able to fulfill different roles
versal	Professional communication skills; concise and precise description, both oral and
compe	written, of professional results,
tencie	Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	and understand fundamental concepts of software quality. be able to apply basic methods for software analysis and software quality assurance.
7.2 Specific objective of the discipline	know the main features of the common software process models. be able to represent the software processes using SPEM standard. be able to create new software processes. be able to use CASE tools for authoring, configuring and publishing software processes know the principles of different software development methodologies: model driven development, agile model driven development, feature driven development, use case driven development, domain driven development, test driven development.

8. Content

8.1 Course	Teaching methods	Remarks
1. Software Process Concepts. Definitions.	Exposure, description,	
Main concepts: role, work product, activity.	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
2. Software Process Models. Typical tasks and life	explanation, debate	
cycle of the more common software	and dialogue,	
development models: ad-hoc development,	discussion of case	
waterfall model, v-model, iterative	studies	
development, prototyping, rapid application		
development, exploratory model, spiral model,		
reuse model, unified process.		
3. Software and System Process Engineering	Exposure, description,	
Meta-Model (SPEM). Meta-model architecture	explanation	

and principles SDEM LIMI profile Core	
and principles. SPEM UML profile. Core. Process structure. Process behavior.	
Software and System Process Engineering Meta-Model (SPEM). Managed content. Method content. Process with methods. Method Plugin. Process diagrams.	Exposure, description, explanation
5. Software Process Frameworks. Eclipse Process Framework Project (EPF).	Exposure, description, explanation, discussion of case studies
6. Software Process Frameworks. Eclipse Open Unified Process (OpenUP).	Exposure, description, explanation, discussion of case studies
7. Model Driven Architecture (MDA). Basic Concepts. MDA transformations.	Exposure, description, explanation,
8. Model Driven Architecture (MDA). Query/View transformation (QVT). Model to text transformation (M2T).	Exposure, description, explanation
9. Agile Model Driven Development (AMDD). Agile modeling. Principles. Best practices. Approaches for applying AMDD on projects.	Exposure, description, explanation, discussion of case studies
10. Feature Driven Development (FDD). FDD process. Feature oriented software development (FOSD). FOSD phases. Software product lines.	Exposure, description, explanation, discussion of case studies
11. Use Case Driven Development. Goal driven view. Types of alternative courses. Use case fundamentals.	Exposure, description, explanation, discussion of case studies
12. Use Case Driven Development. Practical issues. Iconix process.	Exposure, description, explanation, discussion of case studies
13. Domain Driven Development (DDD). Ubiquitous language. Bounded contexts. Layered architecture. Aggregates. Factories. Repositories. Services.	Exposure, description, explanation, discussion of case studies
14. Test Driven Development (TDD). Fundamentals. Examples.	Exposure, description, explanation, discussion of case studies

Bibliography

- 1. Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols, Patterns for Effective Use Cases, Addison-Wesley, 2002.
- 2. Scott W. Ambler, Agile Model Driven Development: The Key to Scaling Agile Software Development, 2009, http://www.agilemodeling.com/essays/amdd.htm
- 3. Sven Apel and Christian Kastner, An overview of Feature-Oriented Software Development, Journal of Object Technology, vol. 8, no. 5, July-August 2009.
- 4. Kent Beck, Test-Driven Development by Example, Addison-Wesley, 2002.

- 5. Eric Evans, Domain-Driven Design, Addison-Wesley, 2004.
- 6. Eclipse Process Framework Project (EPF), 2010, http://www.eclipse.org/epf/
- 7. Eclipse Open Unified Process (OpenUP), 2010, http://epf.eclipse.org/wikis/openup
- 8. OMG, Model-Driven Architecture, 2003, http://www.omg.org/cgi-bin/doc?omg/03-06-01
- 9. OMG, Software & Systems Process Engineering Meta-Model Specification (SPEM) version 2.0, 2008, http://www.omg.org/spec/SPEM/2.0/
- 10. Clay Williams, Matthew Kaplan, Tim Klinger, and Amit Paradkar, Toward Engineered, Useful Use Cases, Journal of Object Technology, vol. 4, no. 6, August 2005.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. (2 nd week) Establish the first practical project theme and allocate the papers to be discussed	Conversation, debate, case studies	Seminar is organized as a total of 7 hours – 2 hours every second week
2. (4 th week) Discussion of the allocated papers	Conversation, debate, case studies, examples	
3. (6 th week) Discussion of the allocated papers	Conversation, debate, case studies	
4. (8 th week) Project presentation and allocate the theme for the written critical essay	Evaluation	
5. (10 th week) Discussion of the allocated papers	Conversation, debate, case studies	
6. (12 th week) Discussion of the allocated papers	Conversation, debate, case studies, examples	
7. (14 th week) Project presentation and Critical Essay evaluation	Evaluation	

Bibliography

Students will use the following two tools for their two practical projects: MagicDraw and EPF

Students will search for the papers in energy-aware programming domain.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- The content of the course is considered by the software companies as important for average software development skills

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
			the grade (%)
10.4 Course	- know the basic principle of	Written exam	40.00%
	the domain;		
	- apply the course concepts		
	- problem solving		

10.5 Seminar/lab activities - b	- be able to implement course concepts e able to use tools for different software process concept	-Practical examination -documentation -portofolio -continous observations	60.00%
- be able to do a critical			
	evaluation of research		
	papers		
	- to be able to write a critical		
	essay		
10.6 Minimum performance standards			
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.			

Date	Signature of course coordinator	Signature of seminar coordinator	
	Assoc. Prof. PhD. Florin CRACIUN	Assoc. Prof. PhD. Florin CRACIUN	
Date of approval		Signature of the head of department	