SYLLABUS

1.1 Higher education	Babeş-Bolyai University
U	Dabeş-Doryar University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Au	dio-video Communica	tion i	n High-speed	Networks	
2.2 Course coor	din	ator		Lect. PhD. Sterca Adrian				
2.3 Seminar co	ordi	nator		Lect. PhD. Sterca Adrian				
2.4. Year of	3	2.5	6	2.6. Type of	С	2.7 Type of	Optional	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship				15	
Evaluations				4	
Other activities:					0
3 7 Total individual study hours		89			

3.7 Total individual study hours	89
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	 Computer Networks, Distributed Operating Systems, Databases, Data Structures and Algorithms, Object Oriented Programming
4.2. competencies	• Strong knowledge in computer networks, very good knowledge on data structures and algorithms, programming languages, object-oriented programming.

5. Conditions (if necessary)

5.1. for the course	Class room with a video projector device
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

o. spech	ic competencies acquired
Professional competencies	 Identification of concepts and models for computing systems and computer networks
Transversal competencies	 Applying rules for an organized and efficient work, responsible attitude towards the didactic-scientific field for creative valorification of one's own potential, complying to the principles and professional ethics norms Utilizing efficient methods and techniques for learning, knowing, research and development of knowledge valorification capacities, adapting to the requirements of a dynamic society and the communication in Romanian or an international language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Getting the student acquainted with concepts and technologies used in audio-video communication in analog networks, satellite or terrestrial, and most importantly in digital "best-effort" networks based on IP (e.g. the Internet). The course is meant to be on an intermediate-to-advanced level in the field of multimedia
7.2 Specific objective of the discipline	 Understanding audio-video codecs and digital audio-video formats, audio-video streaming fundamentals in the Internet (signaling and streaming protocols, rate/congestion control) and the basics of audio-video satellite broadcasting. Being able to perform digital sound processing (like applying sound filters or voice/speech recognition) and video processing (like edge detection and blurring in video frames, object recognition and tracking in videos) The course has also a strong applicative part meaning that students must implement specific applications/projects on the processing, transmission and playback of digital audio-video signal.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction to multimedia. Analog representation	Exposure:description,	JPEG and JPEG2000
of audio and video signals. Digital representation of	explanation,examples,	compression standards
audio and video signals. The JPEG compression	discussion of case studies	are the most used
standard.		image compression
		standards in Internet
		and on digital cameras
		and capture devices
2. Audio-video formats (containers) and codecs.	Exposure:description,	
Basics of video encoding. The structure of a general	explanation,examples,	
video encoder/decoder. AV encoding standards. AV	discussion of case studies	

containers: .avi, .ogg, .mp4, .vob, .3gp, .mkv etc.		
3. Audio-video formats (containers) and codecs. The MPEG-1 and MPEG-2 standards.	Exposure:description, explanation,examples, discussion of case studies	
4. Audio-video formats (containers) and codecs. The H.264/MPEG-4 AVC standard. H.264/MPEG-4 SVC	Exposure:description, explanation,examples, discussion of case studies	H.264/MPEG-4 AVC is one of the most commonly used formats for high definition video in Internet and satellite/terrestrial television networks
5. Multimedia streaming protocols. RTP and RTCP. Multimedia signaling protocols. RTSP, SDP, SIP. Audio-video streaming over HTTP.	Exposure:description, explanation,examples, discussion of case studies	Explains how youtube, vimeo, skype or google hangouts function
6. Congestion control algorithms for audio-video applications in best-effort networks. TCP AIMD, DCCP, TFRC and UTFRC	Exposure:description, explanation,examples, discussion of case studies	
7. Voice over IP. Speech coding. Voice and Speech recognition.	Exposure:description, explanation,examples, discussion of case studies	Explains the basic technologies behind sound recognition software like Google Voice Search on Windows/Android and Siri and Shazzam on iOS
8. Audio-video communication in satellite networks. Basics of satellite communication and DBS (Direct Broadcast Satellite)	Exposure:description, explanation,examples, discussion of case studies	
9. Audio-video communication in satellite networks. Video broadcasting and DVB standards: DVB-S, DVB-T and DVB-C	Exposure:description, explanation,examples, discussion of case studies	Presents the protocols used by current TV content providers.
10. Audio-video libraries and applications. FFMPEG, VideoLan, OpenCV	Exposure:description, explanation,examples, discussion of case studies	FFMPEG and VideoLan are the most used free, open-source libraries for audio- video encoding/decoding and processing and OpenCV is a powerful library used in computer vision (object recognition in video)
11. Multimedia QoS in Internet. P2P video streaming and Internet Television.	Exposure:description, explanation,examples, discussion of case studies	
12. Object recognition in video.	Exposure:description, explanation,examples, discussion of case studies	The basic techniques for object recognition and tracking in videos
Bibliography		

Bibliography 1.Al Bovik, The Essential Guide to Video Processing, Academic Press, Elsevier, 2009.

2.L. Hanzo, P. Cherriman, J. Streit, Video Compression and Communications. From Basics to H.261, H.263, H.264, MPEG4 for DVB and HSDPA-Style Adaptive Turbo-Transceivers, Wiley & IEEE Press, 2007.
3.A. Sterca, Congestion Control for Streaming Protocols, PhD Thesis, 2008.

4. Jain Richardson, Video Codec Design, Wiley, 2002.

- 5. Jain Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.
- 6.Colin Perkins, RTP Audio and Video for the Internet, Addison-Wesley, 2003.
- 7. Tokunbo Ogunfunmi, Madihally Narasimha, Principles of Speech Coding, CRC Press, 2010
- 8. Frank Y. Shih, Image Processing and Pattern Recognition: Fundamentals and Techniques, Wiley-IEEE Press, 2010.

Press, 2010.		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Presentation of project themes. Students must	Dialogue, debate, case	The laboratory is
choose a project theme and must develop that project	studies, examples	structured as 2 hours
by the end of the semester. Examples of project		classes, one lab every
themes for the current year are at		two weeks
http://www.cs.ubbcluj.ro/~forest/cav/projects.html		
2. Image processing. JPEG encoder in java.	Dialogue, debate, case	
Simple examples (in C/C++) using the SDL library	studies, examples	
(displaying a BMP/YUV image on a SDL surface)		
3. Getting acquainted with the FFMPEG library. A	Dialogue, debate, case	
simple audio-video player based on FFMPEG and	studies, examples	
SDL (written in C); synchronizing audio with video,	_	
saving frames as images. Youtube downloader using		
FFMPEG.		
4. Sound processing in Java and C. Creating digital	Dialogue, debate, case	
effects for an electric-acoustic guitar (delay,	studies, examples	
distortion, chorus, echo etc.) – demonstration using a		
Yamaha FX370C electro-acoustic guitar.		
5. Getting input from a digital camera, internal or	Dialogue, debate, case	
using a video capture device (TV tuner), in java	studies, examples	
and C/++; demonstration using a Sony HDR-TD10		
Full HD 3D video camera and an internal Acer		
notebook camera. 3D movie rendering on a regular		
LCD display using anaglyph glasses – demo.		
Object Recognition in videos - simple applications in		
C/C++ using the OpenCV library.		
6. Public presentation of student projects.	Dialogue, case studies	
Bibliography		
1. The FFMPEG code		
2. The VideoLan VLC code		
3. Al Bovik, The Essential Guide to Video Processing, A	Academic Press, Elsevier, 20	009.
4. Iain Richardson, Video Codec Design, Wiley, 2002.		

5. David Salomon, Data Compression: The Complete Reference, Springer, 3rd edition, 2004.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying programs of all major universities in Romania and abroad;
- The content of the course is considered by software companies as important for average programming skills

10. Evaluation

Type of activity10.1 Evaluation10.2 Evaluation methods10	0.3 Share in
--	--------------

	criteria		the grade (%)
10.4 Course 10.5 Seminar/lab activities	Knowing the theoretical issues discussed during the course. Being able to design and understand a multimedia streaming system. Applying the knowledge received from the course, the ability to implement from scratch a multimedia system (without any help from a multimedia framework, using only operating system's drivers and tools).	During the semester, students will have to implement a medium-complexity software project from the multimedia (audio-video) field based on the FFMPEG library. E.g.: audio-video player enhanced with several output filters and surfaces, simple audio or video codec, video surveillance system etc. For a list of potential project ideas for this year see: <u>http://www.cs.ubbcluj.ro/~forest/cav/projects.html</u> As an alternative, the final grade can also be obtained by taking a written exam (without developing a semester project), but in this case, the maximum obtainable final grade is 7.	100 %
	formance standards		
(preferable) or	at the written exam.	adents must get at least 5 at either the project presenta http://www.cs.ubbcluj.ro/~forest/cav	ation

Date

Signature of course coordinator

Signature of seminar coordinator

Lect.PhD. Adrian Sterca

.....

Lect.PhD. Adrian Sterca

Date of approval

.....

Signature of the head of department

Prof. PhD. Bazil Parv