SYLLABUS

1.1 Higher education	Babes-Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Ap	plications of logics			
2.2 Course coor	din	ator		Lecturer Ph.D. Lupe	a Mil	haiela	
2.3 Seminar co	ordi	nator		Lecturer Ph.D. Lupe	a Mil	haiela	
2.4. Year of	2	2.5	2	2.6. Type of	С	2.7 Type of	optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bit	oliography, course notes	5		12
Additional documentation (in libraries	, on	electronic platforms, fie	eld do	cumentation)	6
Preparation for seminars/labs, homewo	ork, j	papers, portfolios and e	ssays		10
Tutorship					6
Evaluations					12
Other activities: individual and colle	ctive	e project			12
3.7 Total individual study hours		58			•

3.7 Total individual study nours	38
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Computational logic, Data structures and algorithms
4.2. competencies	• Average programming skills in a high level programming
	language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	• Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

_	o. specin	c competencies acquired
	es	C3.1 Description of concepts, theories and models in classical logics (propositional, first-order),
	nci	temporal, modal and non-monotonic logics.
	Professional competencies	C3.3 Use of logical models and theorem proving tools for the formalization of human and mathematical reasoning and programs' verification.
	sional	C3.4 Data analysis and logical models for solving different tasks of Natural Language Processing.
	ofess	C3.5 Development of Automated Theorem Proving systems as educational tools for theorem
	Pro	proving in mathematics and programs'verification.
Ī		CT1. Application of organized and efficient working rules, of responsible attitudes concerning
	ies	scientific teaching, for creative exploitation of their own potential with respect to the principles
	enc	and rules of professional ethics.
	Transversal competencies	CT2. Efficient conduct of activities organized in an inter-disciplinary group and the empathic capacity development of inter-personal communication and collaboration with diverse groups.
	ersa	CT3.Use of effective methods and techniques of learning, information, research and capacity
	nsn	development to exploit knowledge, to adapt to a dynamic society and to communicate in
	Tra	Romanian language and in a foreign language.
- 11		

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of concepts, theories and models of different types of logics. Apply logical models in Theorem Proving and Natural Language Processing. Ability to work independently and/or in a team in order to solve problems in defined professional contexts and to develop computer components in interdisiciplinare projects.
7.2 Specific objective of the discipline	 Present theoretical concepts of classical logics, modal, temporal and nonmonotonic logics. Use logics to model common-sense reasoning, mathematical reasoning and programs' verification. Implement ATP systems as educational tools for theorem proving in mathematics and programs' verification. Understand the applications of logics in solving different tasks of Natural Language Processing.

8. Content

8.1 Course	Teaching methods	Remarks
1.Classical logics and their extensions (temporal, modal, non-monotonic). Applications of logics in different domains.	Exposure: description, explanation, examples, discussion of case studies	
2. Automated theorem proving (ATP) systems: architecture, examples.	Exposure: description, explanation, examples, discussion of case studies	

3.Data structures used to represent and manipulate logical formulas.	Exposure: description, explanation, examples, discussion of case studies
4.Binary decision diagrams in propositional logic.	Exposure: description, explanation, examples, discussion of case studies
5.Semantic tableaux method – a new approach – Considerations for implementing an ATP system, based on this method.	Exposure: description, explanation, examples, discussion of case studies
6.Sequent and anti-sequent calculi – two complementary direct proof systems. Considerations for the implementation of an ATP system based on these methods.	Exposure: description, explanation, examples, discussion of case studies
7.Resolution method – refinements (lock, linear, input, unit, ordered); Considerations for implementation.	Exposure: description, explanation, examples, discussion of case studies
8.Semantic resolution (hyper-resolution, the set-of-support strategy, ordered). Heuristics and tree-searching techniques used in implementation.	Exposure: description, explanation, examples, discussion of case studies
9. Formalization of common-sense reasoning (knowledge bases).	Exposure: description, explanation, examples, discussion of case studies
10. Formalization of mathematical reasoning (algebra, geometry).	Exposure: description, explanation, examples, discussion of case studies
11. Using logics in programs' verification.	Exposure: description, explanation, examples, discussion of case studies
12. Using classical logics in Natural Language Processing.	Exposure: description, explanation, examples, discussion of case studies
13. Description logics and their applications in Natural Language Processing.	Exposure: description, explanation, examples, discussion of case studies
14.Written paper	
D:L I: L	

Bibliography

- 1. M. Ben-Ari: Mathematical Logic for Computer Science, Ed. Springer, 2001.
- 2. C.L.Chang, R.C.T.Lee: Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.
- 3. M.Fitting: *First-order Logic and Automated Theorem Proving*, Texts and Monographs in Computer Science, Springer Verlag, 1990, Second Edition 1996.
- 4. M.R. Genesereth, N.J. Nilsson: Logical Foundations of Artificial Intelligence, Morgan Kaufman, 1992.
- 5. D.A. Duffy: Principles of automated theorem proving, John Willey & Sons, 1991.
- 6. M. Lupea, A. Mihis: Logici clasice și circuite logice. Teorie și exemple, ediția 3, Editura Albastra, Cluj-Napoca, 2011.
- 7. L.C. Paulson: Logic and Proof, Univ. Cambridge, 2000, on-line course.
- 8. S.Reeves, M.Clarke: Logic for computer science, Addison Wesley Publisher Ltd, 1990.

R.M.Smullyan: *First-order logic*, Revised Edition, Dover Press, New York, 1996.
 D.Tatar: *Inteligenta artificiala: demonstrarea automata si NLP*, Editura Microinformatica, Cluj-Napoca, 2001.

8.2 Laboratory	Teaching methods	Remarks
1. Working with some existing theorem provers <u>3TAP, ft, Gandalf, LeanTAP, METEOR, Otter,</u> <u>Prover9, SATURATE, SETHEO, Vampire,</u> <u>PCProve, Jape, etc.</u>	Explanation, dialogue, case studies	The laboratory is structured as 2 hours classes every second week
2. Students' individual presentations of a dedicated theorem prover.	Dialog, debate	
3. Data structures for logical formulas – implementation.	Explanation, dialogue, case studies	Teams of 2 students have to implement an ATP system based on one of the studied proof methods. A collective project will incorporate all the teams' projects with an appropriate interface.
4. Choose a proof method to implement – specification and implementation.	Explanation, dialogue, case studies	
5. Build a benchmark of knowledge bases used for common-sense and mathematical reasoning.	Explanation, dialogue, case studies	Each student individually.
6. Build a benchmark of examples of simple programs (transformed in program clauses) used in programs' verification.	Explanation, dialogue, case studies	Each student individually.
7. Students' presentation of the collective project.	Dialog, debate, evaluation	

Bibliography

- 1. W.Bibel: Automated theorem proving, View Verlag, 1987.
- 2. M. Lupea: Theorem proving in classical logics, electronic format, 2009.
- 3. M. Possega: Deduction Systems, Institute of Informatics, 2002, on-line course.

4. (ed) A.Thayse: From standard logic to Logic Programming, Ed. J.Wiley, vol1(1989), vol2(1989), vol3(1990).

- 5. <u>http://www.cs.otago.ac.nz/staffpriv/hans/logiccourseware.html</u>
- 6. <u>http://www-formal.stanford.edu/clt/ARS/systems.html</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of some major universities in Romania and abroad;
- The collective project can be used as an educational tool for theorem proving in mathematics and programs' verification.

|--|

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 know the theoretical concepts of the domain; apply the course concepts in problem solving 	Written paper	40%	
10.5 Seminar/lab activities	 be able to implement course concepts and algorithms apply techniques for different classes of programming languages 	Software project – implementation of an ATP system	30%	
	-be able to model human and mathematical reasoning	Build a benchmark of examples used for testing the ATP system	20%	
	-be able to work with a prover and to present the theoretical aspects of the implemented method	Presentation of a dedicated theorem prover	10%	
10.6 Minimum performance	ce standards			
➤ At least grade 5 (from a scale of 1 to 10) at both written paper and laboratory work.				

Date	Signature of course coordinator	Signature of seminar coordinator
28.04.2014	Lecturer Ph.D. Lupea Mihaiela	Lecturer Ph.D. Lupea Mihaiela

Date of approval

Signature of the head of department

.....

Prof. PhD Pârv Bazil