SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Automated Program Analysis							
2.2 Course coordinator Assoc. Prof. Florin Craciun							
2.3 Seminar coordinator Assoc. Prof. Florin Craciun							
2.4. Year of	3	2.5	6	2.6. Type of	E	2.7 Type of	OPTIONAL
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support	rt, bił	oliography, course notes	5		8
Additional documentation (in librarie	s, on	electronic platforms, fie	eld do	cumentation)	7
Preparation for seminars/labs, homey	vork,	papers, portfolios and es	ssays		8
Tutorship					2
Evaluations					8
Other activities:					_
3.7 Total 33					
individual					
study hours					
3.8 Total hours 75					
per semester					
3.9 Number of 5					
ECTS credits					

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Programming, Algorithms and Data
	Structures, Object-Oriented Programming, Advanced
	Programming Methods
4.2. competencies	Basic knowledge in Python, Java, C#, C++

5. Conditions (if necessary)

5.1. for the course	Projector for lecture presentations
5.2. for the seminar /lab	Computers for practical assignments
activities	

6. Specific competencies acquired

	teneres acquired
Professional competencies	 Good programming skills in high-level languages Better understanding of the program execution Better knowledge about automated program verification Better knowledge about writing correct code Better knowledge about code optimization
Transversal competencies	Ability to design and build dependable software systems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Understanding of the main concepts and techniques to automatically analise, optimize and verify the programs
7.2 Specific objective of the discipline	 To understand the execution model of a program To understand the automated program analyse To understand the automated techniques to optimized the program To understand the automated program verification To become familiar with the tools which automatically analise, optimize and verify the programs

8. Content

8.1 Course	Teaching methods	Remarks
 Operational Semantics for a simple 	• Interactive	
imperative language	exposure	
	 Explanation 	
	• Conversation	
	• Didactical	
	demonstration	
Program Static Analysis	Interactive exposure	
	Explanation	
	Conversation	
	Didactical	
	demonstration	
Automated Optimization Techniques for	Interactive exposure	
programs	Explanation	

	T
	• Conversation
	Didactical
5.7	demonstration
DataFlow Analysis -Part 1	Interactive exposure
	• Explanation
	• Conversation
	• Didactical
D. El. A. I. D. (2)	demonstration
DataFlow Analysis -Part 2	Interactive exposure
	• Explanation
	• Conversation
	• Didactical
C (1F1 A 1 :	demonstration
Control Flow Analysis	• Interactive exposure
	• Explanation
	• Conversation
	• Didactical
Cympholia Evacution of	demonstration
Symbolic Execution of a program	• Interactive exposure
	ExplanationConversation
	Didactical demonstration
• Hoore Logic most!	demonstration
Hoare Logic -part1	• Interactive exposure
	ExplanationConversation
	ConversationDidactical
	demonstration
Hoare Logic -part2	
• Hoare Logic -part2	• Interactive exposure
	ExplanationConversation
	Conversation Didactical
	demonstration
Pointer Analysis	Interactive exposure
Tollici Allalysis	• Explanation
	• Conversation
	Didactical
	demonstration
Separation Logic- part1	Interactive exposure
Separation Logic- parti	• Explanation
	• Conversation
	• Didactical
	demonstration
Separation Logic -part2	Interactive exposure
Separation Edgic Partz	• Explanation
	• Conversation
	• Didactical
	demonstration
Abstract Interpretation – Part 1	Interactive exposure
	• Conversation
Abstract Interpretation-part2	Interactive exposure
1 Tobalet Interpretation part2	• Conversation
	Conversation

Bibliography

1. F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis

8.2 Seminar / laboratory	Teaching methods	Remarks
Tools to visualize operational semantics	Conversation, debate, case studies, examples	The laboratory is structured as 2 hours classes every second week
2. Tools for Dataflow Analysis	•	
3. Tools for Control Flow Analysis	•	
4. Tools for Symbolic Execution		
5. Tools for Automated Verification (Hoare Logic)	•	
6. Tools for Automated Verification (Separation Logic)	•	
7. Tools for Automated Verification(Separation Logic)	•	
	•	
	•	

Bibliography

The latest academic tools open source. The students will be able to change/adapt the tools.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies
 - The content of the course is considered by the software companies as important for average software development skills

10. Evaluation

Course	 - know the basic principle of the domain; - apply the course concepts problem solving 	Written Final Exam	50.00%			
	•					
	•					
Seminar/lab activities	- be able to use courseconcepts in solving the real problems	Laboratory Assignments	50.00%			
	•					
At least grade 5 (from	 At least grade 5 (from a scale of 1 to 10) at written final exam and at each laboratory assignment. 					

Date Signature of course coordinator Signature of seminar coordinator

Assoc. Prof. Florin Craciun Assoc. Prof. Florin Craciun

Date of approval Signature of the head of department