1. Information regarding the programme

8 8 1	
1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Software Systems Verification and Validation							
2.2 Course coordinator PhD Lecturer Vescan Andreea							
2.3 Seminar coordinator				PhD Lecturer Vescan Andreea			
2.4. Year of	3	2.5	6	2.6. Type of	Ε	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					28
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					6
Evaluations					12
Other activities:					-
3.7 Total individual study hours		102			•
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

1 ()	
4.1. curriculum	
4.2. competencies	

6

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

	\$	• Identification of proper methodologies for software systems development;
nal cie	• Identification and explication of proper software systems specification methods;	
ssio	ten	• Using methodologies and tools for development of informatics applications;
ofe	npe	• Using proper criteria and methods for evaluation of software applications;
Pr	cor	Realization of dedicated information projects.
		• Application of efficient and rigorous working rules, manifest responsible attitudes toward the
al	ies	scientific and didactic fields, respecting the professional and ethical principles.
ers	enc	• Use of efficient methods and techniques for learning, information, research and development
JSV	pet	of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for
rai	om	communication in Romanian as well as in a widely used foreign language
	e 2	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To understand what a correct algorithm is. To gain knowledge of designing correct algorithms and proving their correctness hand- in-hand. To learn the methods of program verification and validation. To become used with building correct programs from specifications. To acquire a modern programming style.
7.2 Specific objective of the discipline	 Students will know how and which are the steps of an inspection, either of the source code or specification of each stage of the development of the software system. Students will know to create from the specification and design phase test cases that will help them develop a better and robust software system. Students will know how to use tools for the management of testing process. Students will know how to design test cases using various criteria (white-box, black-box).

8. Content

8.1 Course	Teaching methods	Remarks
1. Verification and validation (the concepts	• Interactive exposure	
verification and validation); Quality Assurance and	Explanation	
Quality Control	Conversation	
	• Didactical	
	demonstration	
2. Program testing (1): the concept of Program testing;	• Interactive exposure	
unit testing: testing criteria, blackbox	• Explanation	
and whitebox testing;	Conversation	
	• Didactical	
	demonstration	
3. SPI, SQA,CMM.	• Interactive exposure	
Cleanroom. Program Quality.	• Explanation	
	Conversation	
	Didactical	
	demonstration	

4. Program testing(2): types of testing(integration T.,	Interactive exposure
system T., regression T., acceptance T.),	• Explanation
testing automatizing;	Conversation
	• Didactical
	demonstration
5. Testing GUI	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
6. Testing Web applications. Selenium Web Driver	Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
7. Program inspection	Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
8. Symbolic execution	Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
9. Model checking	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
10. The theory of program correctness. The evolution	Interactive exposure
of the concept of program correctness.	• Explanation
The Contribution of Floyd, Hoare, Dijkstra,	Conversation
Gries, Droomey, Morgan	• Didactical
	demonstration
11. Program Specification. Floyd's method for	Interactive exposure
prooving correctness.	• Explanation
Dijkstra: the weakest precondition. Stepwise	Conversation
retinement from specifications	Didactical
Hoare's axiomatisation method	demonstration
12. Comparing the verification methods (correctness-	Interactive exposure
inspection-testing-symbolic execution)	• Explanation
Verification and validation: How? Who?	Conversation
When?	• Didactical
	demonstration

Bibliography

- 1. BALANESCU T., Corectitudinea programelor, Editura tehnica, Bucuresti 1995.
- 2. DIJKSTRA, E., A constructive approach to the problem of program correctness, BIT, 8(1968), pg.174-186.
- 3. DIJKSTRA, E., Guarded commands, nondeterminacy and formal derivation of programs, CACM, 18(1975), 8, pg.453-457.
- 4. DROMEY G., Program Derivation. The Development of Programs From Specifications, Addison Wesley

Publishing Company, 1989.

- 5. FRENTIU, M., Verificarea corectitudinii programelor, Ed.Univ."Petru-Maior", 2001.
- 6. GRIES, D., The Science of Programming, Springer-Verlag, Berlin, 1981.
- 7. HOARE, C.A.R., An axiomatic basis for computer programming, CACM, 12(1969), pg.576-580, 583.
- 8. Morgan, C., Programing from Specifications, Prentice Hall, NewYork, 1990.

B. Internet

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar 1:	Presentation,	
• Test cases using Black-box Testing (BBT)	Conversation,	
Laboratory 1:	Problematizations,	
• Test cases using Black-box Testing (BBT)	Discovery, Other methods	
• Test management tool (e.g. Testlink)	– individual study,	
• Issue traker tool (e.g. Bugzilla)	exercises	
Seminar 2:	Presentation,	
• Test cases using White-box Testing (WBT)	Conversation,	
Laboratory 2:	Problematizations,	
• Test cases using White -box Testing (WBT)	Discovery, Other	
• Test management tool (e.g. Testlink)	methods – individual	
• Issue traker tool (e.g. Bugzilla)	study, exercises	
Seminar 3:	Presentation,	
• Levels of testing	Conversation,	
Laboratory 3:	Problematizations,	
• Levels of testing	Discovery, Other	
• Test management tool (e.g. Testlink)	methods – individual	
• Issue traker tool (e.g. Bugzilla)	study, exercises	
Continuous Integration tool (Jenkins)		
Seminar 4:	Presentation,	
• Control paper: WBT+BBT - test cases	Conversation,	
• Inspection	Problematizations,	
Laboratory 4:	Discovery, Other methods	
• Inspection	– individual study,	
Inspection tool	exercises	
• Issue traker tool (e.g. Bugzilla)		
Seminar 5:	Presentation,	
• GUI/Web testing	Conversation,	
Laboratory 5:	Problematizations,	
GUI/Web testing	Discovery, Other	
• Web testing tool (e.g. Selenium Web Driver)	methods – Individual	
• Issue traker tool (e.g. Bugzilla)	study, exercises	
Seminar 6:	Presentation,	
• Correctness	Conversation,	
Laboratory 6:	Problematizations,	
Static analysis using ESCJava2, JML	Discovery, Other	
	methods – individual	
Ribliggraphy	study, exercises	
Divilography		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply testing methods for a software products, testing methods that are used in industry.
- Students will learn various verification and validation methods of a software system.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade $(9())$		
			grade (%)		
10.4 Course	At the end a written	Written examination	50		
10.5 Seminar/lab	examination will give a				
activities	mark E.				
	• The activity at	Control paper 1+ Control	25		
	seminaries, consisting	paper 2+ Seminar activity			
	from participation in				
	solving the exercises				
	and discussions, will				
	be appreciate by a				
	mark S.				
	A second mark L will be		25		
	given for the laboratories				
	work.				
10.6 Minimum performance standards					
Ctudents will leave and evely tecting methods for a software product					

Students will learn and apply testing methods for a software product.

Students will apply various methods for verification (testing, inspection, model checking) for establishing the
 correctness of an algorithm.

• At least grade 5 (from a scale of 1 to 10) at written exam and laboratory work and seminar activity.

DateSignature of course coordinatorSignature of seminar coordinator04.30.2014Lect. PhD. Andreea Vescan,Lect. PhD. Andreea Vescan,

Date of approval

Signature of the head of department

.....

Prof. PhD. Bazil Parv