SYLLABUS

1. Information regarding the programme

8 8 .		
1.1 Higher education	Babes-Bolyai University Cluj-Napoca	
institution		
1.2 Faculty	Faculty of Mathematics and Computer Science	
1.3 Department	Department of Computer Science	
1.4 Field of study	Computer Science	
1.5 Study cycle	Bachelor	
1.6 Study programme /	Computer Science	
Qualification		

2. Information regarding the discipline

2.1 Name of the discipline C			Co	mputational Geomet	ry		
2.2 Course coordinator				Lect. Dr. Liana Topan			
2.3 Seminar coordinator				Lect. Dr. Liana Topa	n		
2.4. Year of	3	2.5	5	2.6. Type of	С	2.7 Type of	Elective Course
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1+1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					20
Evaluations			14		
Other activities:					-
3.7 Total individual study hours		94			1

	3.7 Total individual study nours	94
ſ	3.8 Total hours per semester	150
	3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Elementary knowledge in geometry
	Average programming skills

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Lab with computers
activities	

6. Specific competencies acquired

Professional competencies	 C3.3 Utilizarea modelelor si instrumentelor informatice si matematice pentru rezolvarea problemelor specifice domeniului de aplicare C4.3 Identificarea modelelor si metodelor adecvate pentru rezolvarea unor probleme reale
Transversal competencies	 CT1 Aplicarea regulilor de muncă organizată și eficientă, a unor atitudini responsabile față de domeniul didactic-științific, pentru valorificarea creativă a propriului potențial, cu respectarea principiilor și a normelor de etică profesională

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	•	Ability to understand and approach problems of modeling nature from other sciences
7.2 Specific objective of the discipline	•	The purpose of the course is to present an introduction in algorithmic geometry and some tools used in applied mathematics, information technology and some other scientific domains. The labs facilitate a better understanding of the theoretical notions

8. Content

8.1 Course	Teaching methods	Remarks
1. Convex Hulls in the Plane. Degeneracies	• Interactive exposure	
and Robustness.	• Explanation	
	Conversation	
	• Didactical	
	demonstration	
2. Convex Hulls. The Constructions of Convex	• Interactive exposure	
Hulls in the Plane	• Explanation	
	 Conversation 	
	Didactical	
	demonstration	
3. Segment Intersection. The Doubly-Connected	• Interactive exposure	
Edge List	• Explanation	
	 Conversation 	
	Didactical	
	demonstration	
4. Computing the Overlay of Two Subdivisions	• Interactive exposure	
	• Explanation	
	 Conversation 	
	Didactical	
	demonstration	
5. The Art Gallery Problem. Triangulations	• Interactive exposure	
	• Explanation	
	 Conversation 	
	 Didactical 	

	demonstration
6. Partitioning a Polygon into Monotone Pieces.	
	Interactive exposure
Triangulating a Monotone Polygon	• Explanation
	Conversation
	• Didactical
	demonstration
7. Half-Plane Intersections	• Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstration
8. Point Location and Trapezoidal Maps	• Interactive exposure
	Explanation
	Conversation
	• Didactical
	demonstration
9. A Randomized Incremental Algorithm for	Interactive exposure
Point Location. Dealing with Degenerate	• Explanation
Cases	Conversation
	Didactical
	demonstration
10. The Post-Office Problem. Voronoi Diagrams	Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstration
11. Voronoi Diagrams of Line Segments.	Interactive exposure
Farthest Point Voronoi Diagram	• Explanation
	Conversation
	Didactical
	demonstration
12. Delaunay Triangulations	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstration
13. Convex Hulls in 3-Space	Interactive exposure
	Conversation
14. Convex Hulls and Half-Space Intersection	Interactive exposure
14. Convex truns and tran-space intersection	
Dibliggeorby	• Conversation

Bibliography

- 1. DE BERG, M. VAN KREFELD, M. OVERMARS, M. SCHWARZKOPF, O.: Computational Geometry. Algorithms and Applications, (3rd edition), Springer, 2008
- 2. CHEN, J. Computational geometry. Methods and applications, Texas AM, 1996
- 3. MOUNT, D., Lectures in Computational Geometry, 1997
- 4. O'ROURKE, J.: Art Gallery Theorems and Algorithms, Oxford University Press, 1987
- 5. O'ROURKE, J.: Computational Geometry in C, Cambridge University Press, 1994

Additional references

- BOISSONNAT, J.-D. YVINEC, M.: Algorithmic Geometry, Cambridge University Press, 1998
 CORMEN, T.H. LEISERSON, C.E. RIVEST, R.L.: Introduction to Algorithms, The MIT Press, Cambridge, Massachusets, 1990
 EDELSBRUNNER, H.: Algorithms in Combinatorial Geometry, Springer, 1997

- 4. PREPARATA, F.P. SHAMOS, M.I.: Computational Geometry, Springer, 1985

8.2 Seminar / laboratory	Teaching methods	Remarks
1/2 Implementation of Graham's Algorithm	case studies,	
	examples	
3/4 Search and Intersection	case studies,	
	examples	
5/6 Triangulations. Implementation	case studies,	
	examples	
7/8 Linear Time Triangulation. Implementation	case studies,	
	examples	
9/10 Implementation of Incremental Algorithm	case studies, examples	
11/12 Algorithms for Delaunay Triangulation	case studies,	
	examples	
13/14 Implementation of Incremental Algorithm	case studies, examples	

Bibliography

1. DE BERG, M. - VAN KREFELD, M. - OVERMARS, M. - SCHWARZKOPF, O.: Computational

Geometry. Algorithms and Applications, (3rd edition), Springer, 2008

2. CHEN, J. - Computational geometry. Methods and applications, Texas AM, 1996

3. MOUNT, D., Lectures in Computational Geometry, 1997

4. O'ROURKE, J.: Art Gallery Theorems and Algorithms, Oxford University Press, 1987

5. O'ROURKE, J.: Computational Geometry in C, Cambridge University Press, 1994

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

•	The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
•	The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	- know the basic principle	First midterm (written)	20%	
	of the domain;	Second midterm (written)	20%	
	- apply the course	Final exam (written)	20%	
	concepts			
10.5Seminar/lab activities	- be able to implement course concepts and algorithms	portofolio -continous observations	40%	
10.6 Minimum performance standards		At least grade 5 (from a scale of 1 to 10) at both written exams and laboratory work.		

Date

Signature of course coordinator

Signature of seminar coordinator

30.04.2014

Date of approval

Signature of the head of department