1. Information regarding the programme				
1.1 Higher education	Babes Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Computer Science			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Software engineering							
2.2 Course coor	2.2 Course coordinator conf. dr. Dan CHIOREAN						
2.3 Seminar coo	2.3 Seminar coordinator asist. drd. Dragos PETRASCU						
2.4. Year of	2	2.5	4	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1S +
				seminar/laboratory	1L
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	1/1
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					10
Evaluations					20
Other activities:					
3.7 Total individual study hours 94					

5.7 Total marviadal study nouis	74
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Object-Oriented Programming
4.2. competencies	• Average programming skills in a high level object-oriented
	programming language

5. Conditions (if necessary)

5.1. for the course	• beamer
5.2. for the seminar /lab	• Laboratory with computers; high level programming language
activities	environment (Java environments or .NET and a UML CASE tool)

6. Specific competencies acquired

es I	• C2.1 & C2.2 - Knowledge on modeling, software development metodologies, software
na	testing, project management
Professional competencies	• C2.3 - Ability to work independently and in a team in order to develop software complying
fes	with industrial standards.
	• C2.5 - Understanding the role of different artifacts used in the process of software
H 5	development and acquiring the ability of realizing and using these artifacts
	• CT1 - Ability to create different models (analysis, design, implementation, testing) using the
ul ies	UML
erse enc	• CT2 - Ability to create software beginning with model construction, continuing with model
sve	verification and model transformation in code, realizing and using testing models
Transversal competencies	• CT3 - Ability to use a software methodology to produce quality software from analysing
CO]	software requirements to code generation and software testing

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand software production life cycle Improved skills on developing software
7.2 Specific objective of the discipline	 Understand and work with the concepts of: model, model properties. Understanding the role of abstraction in producing models. Understand the differences between modeling languages and modeling methodologies. Understand and work with the most important UML concepts used in constructing software models

8. Content

o. Content					
8.1 Course	Teaching methods	Remarks			
1. Introduction to Software Engineering	Exposure: description, explanation, examples, discussion of case studies				
2. Using UML to specify models	Exposure: description, explanation, examples, discussion of case studies				
3. Requirements Elicitation	Exposure: description, explanation, examples, discussion of case studies				
4. Analysis	Exposure: description, explanation, examples, discussion of case studies				
5. System Design - Decomposing the System	Exposure: description, explanation, examples, discussion of case studies				
6. System Design - Addressing Design Goals	Exposure: description, explanation, examples, discussion of case				

		studies	
7	Object Design - Reusing Pattern Solutions	Exposure: description,	
1.	Object Design - Reusing I attern Solutions	explanation, examples,	
		discussion of case	
		studies	
8	Object Design - Specifying Interfaces	Exposure: description,	
0.	Object Design - Speenying interfaces	explanation, examples,	
		discussion of case	
		studies	
9	Mapping Models to Code	Exposure: description,	
2.	happing models to code	explanation, examples,	
		discussion of case	
		studies	
10	. Testing	Exposure: description,	
10.	. Tosting	explanation, examples,	
		discussion of case	
		studies	
11	. Rationale & Configuration Management	Exposure: description,	
		explanation, examples,	
		discussion of case	
		studies	
12.	. Project Management	Exposure: description,	
	5 0	explanation, examples,	
		discussion of case	
		studies	
13.	. Software Life Cycle	Exposure: description,	
	·	explanation, examples,	
		discussion of case	
		studies	
14.	. Methodologies	Exposure: description,	
		explanation, examples,	
		discussion of case	
		studies	
Biblio	graphy		
1.	Bernd Bruegge, Allen Dutoit - Object-Oriented	l Software Engineering Us	ing UML, Patterns and
	Java - 3rd Edition - Prentice Hall 2009		
2.	Erich Gamma, Richard Helm, Ralph Johnson, J	ohn Vlissides - Design Pat	terns - Addison-Wesley,
	1996		
3.	Ian Sommerville - Software Engineering - 8th		
4.		n - The Unified Modeling L	anguage User Guide,
	V.2.0 - Addison Wesley, 2005		
5.	Martin Fowler et al Refactoring - Improving	the Design of Existing Co	de - Addison Wesley,
	1999		1
8.2 Ser		Teaching methods	Remarks
1.	Use cases diagrams, concepts, relationships,	Explanation, Dialogue,	The seminar is
	representation, the structure of a use case	debate, case studies,	structured as 2 hours
	description document	examples, proofs	classes at each two
			weeks period
2.	Describing structural models using class	Explanation, Dialogue,	
	diagrams - concepts, relationships,	debate, case studies,	
	representation, filtering the information	examples, proofs	
3.	Describing behavioural models using sequence	Explanation, Dialogue,	
	and collaboration diagrams - the concepts used	debate, case studies,	
	in these diagrams, the equivalence of these	examples, proofs	
	diagrams	1	1

diagrams

4. Describing behavioural models using state	Explanation, Dialogue,	
transition diagrams. Generating code from	debate, case studies,	
state class diagrams	examples, proofs	
5. Using assertions to specify model correctness	Explanation, Dialogue,	
against different kind of rules. Code	debate, case studies,	
generation for UML models	examples, proofs	
6. The role of pre-post-conditions in specifying	Explanation, Dialogue,	
component's interface - design by contract	debate, case studies,	
	examples, proofs	
7. Testing patterns	Explanation, Dialogue,	
	debate, case studies,	
	examples, proofs	
Bibliography		
1. Martin Fowler - UML Distilled - Addison-Wesl	ley, 2003	
2. Bruce Eckel - Thinking in Java 4th edition - Pr	-	
3. Kent Beck - Test Driven Development - Addise		
8.2 Laboratory	Teaching methods	Remarks
1. Agile Software Methodologies - planning the	Explanation, dialogue,	The laboratory is
software development phases. Risk analysis in	case studies	structured as 2 hours
software development, the role of incremental		classes at each two
and iterative development. Analysis of small		weeks period
software applications that each student has to		I I I I I I I I I I I I I I I I I I I
analyse, design, implement and test.		
2. Using an UML CASE tool and text editors to	Explanation, dialogue,	
realize the functional model of each individual	case studies	
problem		
3. Using an UML CASE tool to construct The	Explanation, dialogue,	
requirement model of each individual problem	case studies	
4. Constructing the Design model using an UML	Explanation, dialogue,	
CASE tool	case studies	
5. Realizing the Implementation model using	Testing data discussion,	
both an UML CASE tool and an appropriate	evaluation	
IDE		
6. Testing the application realized	Testing data discussion,	
o. Tobulg the upploadon founzed	evaluation	
7. Realizing the User manual and delivering the	Explanation, dialogue,	
application	case studies	
Bibliography		
Dionography		

1. Kenneth S. Rubin - Essential Scrum - A Practical Guide to the Most Popular Agile Process -Addison-Wesley 2012

2. Philippe B. Kruchten - The Rational Unified Process: An Introduction - 3rd Edition Addison -Wesley 2003

3. Per Kroll, Philippe Kruchten and Grady Booch - The Rational Unified Process Made Easy: A Practitioner's Guide to the RUP - Addison-Wesley 2003

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science Studies; ٠
- The course exists in the studying program of all major universities in Romania and abroad; •
- The content of the course contains knowledge mandatory for any IT specialist working in a software • company

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic concepts & SE principles; knowledge of UML key concepts knowledge of modeling methodologies 	Written exam	60%
10.5 Seminar/lab activities	 be able to implement acknowledged knowledge in producing software be able to produce and use modeling artifacts 	 Practical examination documentation continuous observations 	40%

Date	Signature of course coordinator	Signature of seminar coordinator
11 May 2014	conf. dr. Dan CHIOREAN	asist. drd. Dragos PETRASCU

Date of approval

Signature of the head of department

prof. dr. Bazil PÂRV