1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Probability Theory and Statistics								
2.2 Course coordinator Lect. Prof. PhD. Sanda Micula								
2.3 Seminar coordinator Lect. Prof. PhD. Sanda Micula								
2.4. Year of	2	2.5	3	2.6. Type ofE2.7 Type ofCompulsory				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 cour	se 2)	3.3	1 sem +
5.1 Hours per week	5	Of which. 5.2 cour		2		
					seminar/laboratory	2 lab
3.4 Total hours in the curriculum	70	Of which: 3.5 cour	se 2	28	3.6	42
					seminar/laboratory	
Time allotment:						hours
Learning using manual, course support, bibliography, course notes					20	
Additional documentation (in libraries, on electronic platforms, field documentation)					10	
Preparation for seminars/labs, homework, papers, portfolios and essays					23	
Tutorship					7	
Evaluations					20	
Other activities:				-		
3.7 Total individual study hours		80				1
2.9 Total hours non compaten		150				

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis		
	• Algebra		
4.2. competencies	Logical thinking		
	Average logical programming skills		

5. Conditions (if necessary)

5.1. for the course	Lecture room with large blackboard and video projector
5.2. for the seminar /lab	• For seminar: room with large blackboard

activities	•	For lab: Laboratory with computers having Matlab installed
------------	---	--

6. Specif	ic competencies acquired
Professional competencies	 C4.1 Defining basic concepts, theory and mathematical models C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving real-life problems C4.5 Embedding formal models in applications from various areas
Transversal competencies	 CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory and Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various probabilistic and statistical models Ability to perform statistical analysis of data Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Experiments, events, field of events, operations with events. Axiomatic definition of probability. Poincaré's formula. Classical definition of probability. Geometric probability. Buffon's needle problem. Conditional probability. Independent events. Total probability formula, Bayes' formula. Classical probabilistic models (binomial, multinomial, hypergeometric, Poisson, Pascal, geometric). 	 Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration 	
 Random variables and random vectors. Discrete random variables. Probability distribution function. Cumulative distribution function. Properties, examples. Discrete probability laws (Bernoulli, binomial, binomial, binomial, binomia	 Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure 	
 hypergeometric, Poisson, Pascal, geometric). Discrete random vectors. Operations with discrete random variables. 5. Continuous random variables. Probability 	 Explanation Conversation Didactical demonstration Interactive exposure 	
density function. Continuous probability laws	Explanation	

		1
(uniform, normal, Gamma, exponential, Chi- squared, Beta, Student, Cauchy, Fisher).	Conversation	
Independent random variables. Functions of	Didactical demonstration	
continuous random variables.		
6. Numerical characteristics of random variables.	• Interactive exposure	
Expectation. Variance. Moments (initial,	• Explanation	
central, absolute). Covariance and correlation	Conversation	
coefficient. Quantile, median, quartiles.	Didactical demonstration	
Inequalities (Hölder, Schwartz, Cauchy-		
Buniakovski, Minkowsky, Markov,		
Chebyshev).		
7. Sequences of random variables. Convergence	• Interactive exposure	
of sequences of random variables. Laws of	• Explanation	
large numbers. Limit theorems.	Conversation	
	Didactical demonstration	X7' 1
8. Descriptive statistics. Data collection.	• Interactive exposure	Video projector
Graphical display of data. Frequency distribution and histograms. Parameters of a	• Explanation	presentation
statistical distribution. Measures of central	Conversation	
tendency. Measures of variation. Correlation	Didactical demonstration	
and regression. Linear regression.		
9. Sample theory. Samples. Sample functions	Interactive exposure	
(sample mean, sample variance, sample	• Explanation	
moments). Estimation theory. Unbiased	Conversation	
estimators. Confidence intervals for	Didactical demonstration	
estimating the population mean and the		
population variance. Confidence intervals for		
comparing two population means and two		
population variances.	T ()	
10. Estimation theory. Properties of point estimators. Sufficient statistics. Likelihood	• Interactive exposure	
function. The Rao-Blackwell theorem and	Explanation	
minimum variance estimators. Fisher's	ConversationDidactical demonstration	
information. Absolutely correct estimators.	Didactical demonstration	
Methods of estimation. The method of		
moments estimator, the method of maximum		
likelihood estimator.		
11. Hypothesis testing. Rejection region. Type I	• Interactive exposure	
errors. Significance testing and P-values. The	Explanation	
Z-test and T (Student)-test for the mean.	Conversation	
Examples.	Didactical demonstration	
12. The Chi-square-test for variance. The F-test	• Interactive exposure	
for the ratio of variances. Tests for the	• Explanation	
difference of means. Examples. Robust tests.	Conversation	
	Didactical demonstration	
13. Type II errors and the power of a test. Most	• Interactive exposure	
powerful tests and the Neyman-Pearson	• Explanation	
lemma. Uniformly most powerful tests.	Conversation	
Examples.	Didactical demonstration	
14. The Chi-square-test for several	• Interactive exposure	
characteristics. The Chi-square-test for	• Explanation	
contingency tables.	Conversation	
Dibliggraphy	Didactical demonstration	
Bibliography		

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Agratini, O., Blaga, P., Coman, Gh., Lectures on Wavelets, Numerical Methods and Statistics, Casa Cartii de Stiinta, Cluj-Napoca, 2005.
- 3. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 4. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 5. Blaga, P., Radulescu, M., Calculul probabilitatilor, Universitatea "Babes-Bolyai" Cluj-Napoca, 1987.
- 6. Feller, W., An introduction to probability theory and its applications, Vol.I-II, John Wiley, New York, 1957, 1966.
- 7. Iosifescu, M., Mihoc, Gh., Theodorescu, R., Teoria probabilitatilor si statistica matematica, Editura Tehnica, Bucuresti, 1966.
- 8. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

Engineering and the Computing Sciences, 3rd E		
8.2 Seminar	Teaching methods	Remarks
 Euler's Gamma and Beta functions. Properties. 	 Interactive exposure Explanation Conversation Didactical demonstration 	The seminar is structured as 2 hours per week, every other week
 Classical probability problems. Geometric probability. Conditional probability. Independent events. Bayes' formula. Classical probabilistic models. 	 Interactive exposure Explanation Conversation Individual and group work Interactive exposure Conversation Synthesis Individual and group work 	
4. Discrete random variables and random vectors. Operations with discrete random variables.	 Individual and group work Interactive exposure Explanation Conversation Individual and group work 	
 Continuous random variables and random vectors. Functions of continuous random variables. 	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
6. Numerical characteristics of random variables.	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
7. Inequalities. Sequences of random variables.	 Interactive exposure Explanation Conversation Didactical demonstration Individual and group work 	
8.3 Laboratory	Teaching methods	Remarks
1. Introduction to Matlab, I.	 Interactive exposure Explanation Conversation Individual and group work 	
2. Introduction to Matlab, II.	Interactive exposureExplanation	

	Conversation
	Individual and group work
3. Discrete random variables. Probability	
distribution function.	-
	ExplanationConversation
4. Continuous rendem veriebles. Probability	Individual and group work
4. Continuous random variables. Probability density function. CDF and Inverse CDF.	Interactive exposure
density function. CDF and inverse CDF.	ExplanationConversation
5. PDF and CDF of continuous distributions.	Individual and group work
	• Interactive exposure
Random number generators.	• Explanation
	Conversation
	Individual and group work
6. Numerical characteristics of random	Interactive exposure
variables.	• Explanation
	Conversation
	Individual and group work
7. Overview of Statistics Toolbox features.	Interactive exposure
Samples.	Conversation
	• Synthesis
	Individual and group work
8. Descriptive Statistics. Grouped frequency	Interactive exposure
distribution, graphical display of data.	Explanation
Statistical measures.	Conversation
	Individual and group work
9. Correlation and regression.	Interactive exposure
	Explanation
	Conversation
	Individual and group work
10. Confidence intervals for one population.	Interactive exposure
	Explanation
	Conversation
	Individual and group work
11. Confidence intervals for comparing two	Interactive exposure
populations.	Explanation
	Conversation
	Individual and group work
12. Hypothesis and significance testing for one	Interactive exposure
population.	Explanation
	Conversation
	Individual and group work
13. Hypothesis and significance testing for	Interactive exposure
comparing two populations.	Explanation
	Conversation
	Individual and group work
14. Overview of statistical methods	Interactive exposure
	Explanation
	Conversation
	Individual work
Bibliography	

1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.

- 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose;

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Probability Theory and Mathematical Statistics; be able to apply correctly the course concepts on various applications problem solving 	Written exam on problems only (a sheet with the main probabilistic and statistical formulas is available)	50%
10.5 Seminar activities	 be able to apply course concepts and techniques on practical problems be able to choose and apply the right probabilistic or statistical model to various practical problems problem solving 	 participation in discussing and solving problems throughout the semester additional documentation individual presentation of solutions solving bonus problems 	25%
10.6 Lab activities	 be able to implement course concepts and algorithms in Matlab be able to solve numerical statistical problems in Matlab 	 participation in discussing and solving problems throughout the semester lab exam (numerical statistical applications) 	25%
10.7 Minimum performan	ce standards		
	ove (on a scale from 1 to 10) nar evaluation, lab evaluation)	on each of the three activities r	nentioned above

10. Evaluation

DateSignature of course coordinatorSignature of seminar coordinator...25.04.2014.....Lect. Prof. PhD. Sanda MiculaLect. Prof. PhD. Sanda Micula

.....

.....