SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Gr	aph algorithms			
2.2 Course coor	din	ator		Lect. PhD. Radu Luj	psa		
2.3 Seminar coordinator Lect. PhD. Radu Lupsa							
2.4. Year of	1	2.5	2	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					4
Evaluations					5
Other activities:					_
3.7 Total individual study hours		69			

3.7 Total individual study hours	69
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average skils in analysis and design of algorithms and data structures,
	including implementing them in a programming language.
5.1. for the course	•
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (C++, Java, .NET, python)

5. Conditions (if necessary)

6. Specific competencies acquired

Prof essio	• C3.2 Identificarea si explicarea modelelor informatice de baza adecvate domeniului de aplicare
nal com	• C3.3 Utilizarea modelelor si instrumentelor informatice si matematice pentru rezolvarea problemelor specifice domeniului de aplicare
pete	• C 4.2 Interpretarea de modele matematice si informatice (formale)
ncies	• C 4.3 Identificarea modelelor si metodelor adecvate pentru rezolvarea unor probleme reale
Tran	• CT1 Aplicarea regulilor de munca organizata si eficienta, a unor atitudini responsabile
svers	fata de domeniul didactic-stiintific, pentru valorificarea creativa a propriului potential, cu
al	respectarea principiilor si a normelor de etica profesionala
com pete ncies	• CT3 Utilizarea unor metode si tehnici eficiente de învatare, informare, cercetare si dezvoltare a capacitatilor de valorificare a cunostintelor, de adaptare la cerintele unei societati dinamice ?i de comunicare în limba româna ?i într-o limba de circula?ie interna?ionala

7.1 General objective of the discipline	• Knowing the graph theoretical concepts and using these concepts in the problem modeling.
	• Knowing how to implement the graph algorithms in a programming language.
7.2 Specific objective	• Analyzing the issues around the main topics of graph: connectivity, shortest paths, modeling prerequisites and activity planning, flows, traveling salesman problem, planar graphs.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course	Teaching methods	Remarks
1. Basic graph theory definitions (graph,	Exposure: description,	
multigraph, directed graph/multigraph, walk, trail,	explanation, examples, debate	
path), basics on graph representations		
2. In-deep study of possible graph	Exposure: description,	
representations	explanation, examples, debate	
3. Connectivity and shortest path	Exposure: description,	
problems. Depth-first and breadth-first	explanation, examples, debate	
traversal of a graph.Connected and strongly-		
connected components.		
4. Lowest-cost path in a graph. Dynamic	Exposure: description,	
programming approach. Bellman-Ford	explanation, examples, debate	
algorithm.		
5. Dijkstra algorithm . Floyd-Warshal	Exposure: description,	
algorithm.	explanation, examples, debate	
6. Dependency graphs, partial order and	Exposure: description,	
topological sorting. Topological sorting	explanation, examples, debate	
algorithms and strongly connected		
components algorithms.		
7. Activity planning problem and	Exposure: description,	
algorithms.	explanation, examples, debate	

8. Trees and forests. Minimum spanning	Exposure: description,
trees. Kruskal and Prim algorithms.	explanation, examples, debate
9. NP-complete problems. Hamiltonian	Exposure: description,
cycle, Traveling Salesman Problem.	explanation, examples, debate
10. Other hard problems: clique, vertex	Exposure: description,
cover, coloring.	explanation, examples, debate
11. Eulerian cycle. Planar graphs: Euler's	Exposure: description,
relation, K5 and K3,3 graphs, relations	explanation, examples, debate
between number of edges and vertices.	
12. Transport networks. Maximum flow.	Exposure: description,
Ford-Fulkerson algorithm.	explanation, examples, debate
13. Maximum flow of minimim cost.	Exposure: description,
	explanation, examples, debate
14. Matching problem	Exposure: description,
	explanation, examples, debate

Bibliography

1. CORMEN, LEISERSON, RIVEST: Introducere in algoritmi, Editura Computer Libris Agora, 2000.

2. T. TOADERE: Grafe. Teorie, algoritmi si aplicatii , Ed. Albastra, Cluj-N., 2002

3. KÁSA ZOLTÁN: Combinatiroca cu aplicatii, Presa Universitara Clujeana, 2003.

4. BERGE C., Graphes et hypergraphes, Dunod, Paris 1970.

5. BERGE C., Teoria grafurilor si aplicatiile ei, Ed. Tehnica, 1972

6. http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/

8.2 Seminar	Teaching methods	Remarks
1. Basic definitions. Graph	Dialogue, debate, examples,	
representations.	guided discovery	
2. More on graph representations. Graph	Dialogue, debate, examples,	
traversals. Connected components.	guided discovery	
3. Finding shortest path. Bellman-Ford	Dialogue, debate, examples,	
algorithm.	guided discovery	
4. Shortest path: Dijkstra and Floyd-	Dialogue, debate, examples,	
Warshall.	guided discovery	
5. Tree traversal. Minimum spanning tree:	Dialogue, debate, examples,	
Kruskal and Prim algorithms.	guided discovery	
6. Planar graphs. Hard problems in graph	Dialogue, debate, examples,	
theory.	guided discovery	
7. Maximim flow and matching problems.	Dialogue, debate, examples,	
	guided discovery	
8.3 Laboratory	Teaching methods	Remarks
8. Graph representations	Dialogue, debate, case study,	
	guided discovery	
9. More on graph representations	Dialogue, debate, case study,	
	guided discovery	
10. Connectivity and lowest length paths	Dialogue, debate, case study,	
	guided discovery	
11. Lowest cost paths	Dialogue, debate, case study,	
	guided discovery	
12. Dependency graphs. Minimum	Dialogue, debate, case study,	
spanning trees.	guided discovery	
13. NP-complete problems	Dialogue, debate, case study,	

		guided discovery	
14.	Finishing the lab activity.	Dialogue, debate, case study,	
		guided discovery	

Bibliography

1. KÁSA Z., TARTIA C., TAMBULEA L.: Culegere de probleme de teoria grafelor, Lito. Univ. Cluj-Napoca 1979.

2. CATARANCIUC S., IACOB M.E., TOADERE T., Probleme de teoria grafelor, Lito. Univ. Cluj-Napoca, 1994.

3. TOMESCU I., Probleme de combinatorica si teoria grafurilor. Ed. Did. si Pedag. Bucuresti 1981.

4. KÁSA Z., TARTIA C., TAMBULEA L.: Culegere de probleme de teoria grafelor, Lito. Univ. Cluj-Napoca 1979.

5. CATARANCIUC S., IACOB M.E., TOADERE T., Probleme de teoria grafelor, Lito. Univ. Cluj-Napoca, 1994.

6. TOMESCU I., Probleme de combinatorica si teoria grafurilor. Ed. Did. si Pedag. Bucuresti 1981.

7. http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	66.67%
10.5 Seminar/lab activities	- be able to implement course concepts and algorithms	Verifying the practical works.	33.33%
10.6 Minimum perform	nance standards		
At least	grade 5 (from a scale of 1 to 10)	at both written exam and lab	oratory work.

Date

Signature of course coordinator

Signature of seminar coordinator

.....

Lect. PhD. Radu Lupsa.....

.....

.....