SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Computational Logic								
2.2 Course coo	rdir	nator	Lecturer Ph.D. Lupea Mihaiela					
2.3 Seminar coordinator L				Lecturer Ph.D. Lupea Mihaiela				
2.4. Year of	1	2.5	1	2.6. Type of exam 2.7 Type of compulsory				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					26
Tutorship				8	
Evaluations				30	
Other activities:					
A = m - 1 : 1: 11 1 1 1 1		0.4			1

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

0. Specif	ic competencies acquired					
	C 4.1 Definition of concepts and principles of computer science and mathematical theories and					
ies	models					
Professional competencies	C 4.2 Interpretation of mathematical models and computer science (formal) C 4.3 Identifying appropriate models and methods to solve real problems					
ona	C 4.5 Incorporation of formal models in specific applications in various fields					
Professi	C6.1 Identify basic concepts and models for computer systems. C6.2 Identify and explain the basic architecture for the organization of systems.					
ss _	CT1. Application of organized and efficient working rules, of responsible attitudes concerning scientific teaching, for creative exploitation of their own potential with respect to the principles and rules of professional ethics.					
Transversal competencies	CT3.Use of effective methods and techniques of learning, information, research and capacity development to exploit knowledge, to adapt to a dynamic society and to communicate in Romanian language and in a foreign language.					

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To introduce the logical foundations of computer science : propositional calculus and predicate calculus, theorem proving methods, Boolean algebras and Boolean functions. The connection with logic programming and logical circuits is presented.
700 : 1: 0:1	To introduce internal representations of integer and real numbers.
7.2 Specific objective of the discipline	 Understand how numbers (integer and real) are represented and manipulated internaly by a computer. Understand the functionality of some simple logical circuits from the hard component of a computer. Identify and apply appropriate logical (propositional/predicate) models and proof methods to solve real problems in the domain of human and mathematical reasoning.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1. Numeration systems:	Exposure: description,	
1. Definitions, representation and operations	1 ' 1 '	
(algorithms for comparison, addition, subtraction,	discussion of case	
multiplication division to a digit) of numbers in a	studies	
base b.		
2. Conversions between bases using an intermediate		
base for integer and rational numbers.		
3. Rapid conversions (bases 2,4,8,16).		
Course 2. Internal numbers' representation	Exposure: description,	
1. Representation for unsigned integers, operations.	explanation, examples,	

 Representation for signed integers: direct code, inverse code, complementary code, operations. Fixed-point and floating-point representations for real numbers. 	discussion of case studies
Course 3. Propositional logic – syntax and semantics 1. Syntax: connectives, formulas. 2. Semantics: interpretation, model, consistent formula, inconsistent formula, tautology, logical consequence, truth table for a formula. 3. Laws (logical equivalences): DeMorgan, absorption, commutativity, associativity, distributivity, idempotency. 4. Clauses and normal forms: conjunctive normal form (CNF) and disjunctive normal form (DNF), algorithm for transformation of a formula into DNF and CNF.	Exposure: description, explanation, examples, discussion of case studies, debate, dialog
 Course 4. Propositional logic –formal system Formal (axiomatic) system associated to propositional logic, deduction, theorem. Theorem of deduction and its consequences. Properties of propositional logic: coherence, noncontradiction, decidability. 	Exposure: description, explanation, examples, discussion of case studies, proofs, dialog
 Course 5. Semantic tableaux method – a refutation proof method for proposition logic. 1. Classes of formulas, decomposition rules, branch (open, closed), construction of a semantic tableau. 2. Theorem of soundness and completeness for the method. 	Exposure: description, explanation, examples, discussion of case studies, dialog
Course 6. Resolution – a refutation proof method for propositional logic 1. Resolution as a formal system. 2. Strategies of resolution: level saturation strategy, set-of-support strategy, deletion strategy.	Exposure: description, explanation, examples, discussion of case studies, proofs
Course 7. Refinements of propositional resolution 1. Lock resolution, linear resolution. 2. The soundness and completeness properties of general resolution and its refinements.	Exposure: description, explanation, examples, discussion of case studies
 Course 8. Predicate (first-order) logic Syntax: connectives, quantifiers, terms, atoms, formula, clause, literal, closed formula, free formula, the formal (axiomatic) system. Semantics of predicate logic: interpretation, model, valid formula, consistent formula, inconsistent formula, logical consequence. Prenex normal form, Skolem theorem, Skolemization algorithm, clausal normal form. Properties of predicate logic: noncontradiction, coherence and semi-decidability. 	Exposure: description, explanation, examples, discussion of case studies, proofs

Course 9. 1. Semantic tableaux method for predicate logic – rules for quantifiers. 2. Substitutions and unifications - theory, algorithm for obtaining the most general unifier o two atoms.	Exposure: description, explanation, examples, discussion of case studies
Course 10. Resolution in predicate logic 1. Resolution method in predicate logic. 2. Refinements of resolution.	Exposure: description, explanation, examples, discussion of case studies, dialog, debate
Course 11. Modeling the common-sense reasoning and mathematical reasoning in propositional and predicate logics.	Exposure: description, explanation, examples
Course 12. Boolean algebras. Boolean functions. 1. Boolean algebras: definitions, properties, principle of duality, examples; 2. Boolean functions: definitions, maxterms, minterms, the canonic disjunctive form and the canonic conjunctive form, transformation. 3. Definitions: maximal monoms, central monoms, factorization.	Exposure: description, explanation, examples, discussion of case studies
Course 13. Simplification of Boolean functions 1. Veitch-Karnaugh diagrams method for functions with 2-3-4 variables. 2. Quine's method	Exposure: description, explanation, examples, discussion of case studies
Course 14. Logical circuits 1. Definitions, representations for basic gates and derived gates. 2. Examples of simple logical circuits: "decoder", "binary codification" circuit, "comparison circuit", "addition" circuit;	Exposure: description, explanation, examples, discussion of case studies

Bibliography

- 1. M. Ben-Ari: Mathematical Logic for Computer Science, Ed. Springer, 2001.
- 2. F.Boian, Bazele Matematice ale Calculatoarelor, Editura Presa Universitara Clujeana, 2002 library.
- 3. C.L.Chang, R.C.T.Lee: Symbolic Logic and Mechanical Theorem Proving, Academic Press.
- 4. M. Cocan, B. Pop: Bazele matematice ale sistemelor de calcul, Editura Albastra, Cluj-Napoca, 2001 UBB library.
- 5. M.Fitting: First-order logic and Automated Theorem Proving, Ed.Springer Verlag, 1990.
- 6. M. Lupea, A. Mihis: Logici clasice și circuite logice. Teorie și exemple, ediția 3, Editura Albastra, Cluj-Napoca, 2011 UBB library.
- 7. Mihaela Malita, Mircea Malita, Bazele Inteligentei Artificiale, Vol. I, Logici propozitionale, Ed. Tehnica, Bucuresti, 1987 UBB library.
- 8. L.C. Paulson: Logic and Proof, Univ. Cambridge, 2000, on-line course.
- 9. M. Possega: Deduction Systems, Inst. of Informatics, 2002, on-line course.
- 10. D. Tatar: Bazele matematice ale calculatoarelor, ediția 1999 UBB library.

8.2 Seminar / laboratory Seminar 1. Exercises 1. Operations (addition, subtraction, division, multiplication) in different numeration bases. Particular bases: 2,4,8,16. 2. Rapid conversions.	Teaching methods Dialogue, case studies, examples	Remarks Seminars' presence is mandatory for at least 70%.
Seminar 2: Exercises 1. Conversions between bases using the methods (calculus in the source base, calculus in the destination base, using an intermediate base) for integer and rational numbers. 2. Representation of unsigned integers, operations.	Dialogue, case studies, examples	
 Seminar 3. Exercises 1. Representation of signed integers: direct code, inverse code, complementary code, operations. 2. Representations of real numbers: fixed-point and floating-point representations. 	Dialogue, case studies, examples	
Seminar 4. Exercises: 1. Using the truth table, decide if a formula is consistent/tautology/inconsistent and write all the models of a consistent formula. 2. Transform a formula into DNF and CNF equivalent forms and using these forms decide if a formula is inconsistent/tautology.	Dialogue, debate, case studies, examples, students presentations	
 Seminar 5 1. One hour - written paper with subjects from courses 1-2 and seminars 1-3. 2. Exercises Apply the theorem of deduction to prove the syllogism rule, separations of premises rule, reunion of premises rule. Using the axiomatic system prove that a propositional formula is a theorem. 	Dialogue, debate, case studies, examples, proofs, students presentations	The presence at the written paper is mandatory.
 Seminar 6. Exercises: 1. Build the semantic tableau of a propositional formula, write all its models and anti-models. 2. Check if a propositional formula is a tautology / logical consequence of a set of formulas. 	Dialogue, debate, case studies, examples, students presentations	
 Seminar 7. Exercises – resolution I: 1. Using resolution check if a set of clauses is inconsistent or not. 2. Check if a propositional formula is a theorem/ deductible from a set of formulas using resolution or one of its strategies. 	Dialogue, debate, case studies, examples, students presentations	

 Seminar 8. Exercises – resolution II: Apply the refinements of resolution and combinations of strategies and refinements to solve the decisions problems in propositional logic. Details regarding the implementation of lock resolution and linear resolution. Seminar 9. Exercises - predicate logic: Transform natural language sentences into predicate formulas. Build models and anti-models for a predicate formula. Build the prenex, Skolem and clausal normal forms for a predicate formula. 	Dialogue, debate, case studies, examples, students presentations Dialogue, debate, case studies, examples, students presentations	
 Seminar 10. Exercises: Using the semantic tableaux method solve the decision problems in predicate logic. From a semantic tableau of a predicate formula build the models of that formula. Compute the most general unifier of two or more atoms. 	Dialogue, debate, case studies, examples, students presentations	
 Seminar 11. Exercises: 1. Check if a predicate formula is a theorem / is deductible from a set of formulas using resolution procedure and its refinements. 2. Modeling the common-sense reasoning and mathematical reasoning using propositional and predicate logics. 	Dialogue, debate, case studies, examples, students presentations	
Seminar 12. Exercises: 1. Build the canonical forms for a Boolean function. 2. Apply Veitch-Karnaugh diagrams method to simplify functions with 2-3-4 variables.	Dialogue, debate, case studies, examples, students presentations	
 Seminar 13. Exercises: 1. Apply Quine's method to simplify Boolean functions. 2. Given a Boolean function represented using a tableau containing the values of the function: simplification, implementation of the corresponding logical circuit. 	Dialogue, debate, case studies, examples, students presentations	
 Seminar 14. Exercises: Given a Boolean function (with "and", "or", "not", "nor", "nand" operations): simplification, implementation of the corresponding logical circuit. Given a logical circuit (with basic and derived gates): write the corresponding boolean function, simplification of this function. 	Dialogue, debate, case studies, examples, students presentations	

Bibliography

- 1. W.Bibel: Automated theorem proving, View Verlag, 1987.
- 2. Cl.BENZAKEN: Systeme formels. Introduction a la logique, ed.Masson, 1991.
- 3. J.P.DELAHAYE: Outils logiques pour l'intelligence artificielle, ed.Eyrolls, 1986.
- 4. D.Tatar: Inteligenta artificiala: demonstrare automata de teoreme si NLP, Ed. Microinformatica, 2001.
- 5. (ed) A.Thayse: From standard logic to Logic Programming, Ed. J.Wiley, vol1(1989), vol2,vol3(1990).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course offers a theoretical base for the applicative direction of building automated proof systems useful in mathematics, software engineering, intelligent agents, robotics, natural language.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in		
			the grade (%)		
10.4 Course	know the basic principles of the domain;apply the course concepts, methods and algorithms in problem solving	Written paper (regular session) with subjects from courses 3-13.	60%		
	 know to perform operations and conversions in different numeration bases know to represent integer and real numbers 	Written paper (seminar 5 -one hour) with subjects from courses 1-2.	15%		
10.5 Seminar/lab activities	- solve at home and present at the seminars exercises from an existing benchmark of problems	Seminar activity: responses and individual presentations of solved exercises.	20%		
	- exercises: reasoning modeling using propositional logic and predicate logic or - implementation of algorithms for operations and conversions in different numeration bases	Optional homework (can increase the final mark)	10%		
10.6 Minimum performance standards					
> At least grade	At least grade 5 (from a scale of 1 to 10) at written papers and seminar activity.				

Date	Signature of course coordinator	Signature of seminar coordinator	
9.05.2014	Lecturer Ph.D. Lupea Mihaiela	Lecturer Ph.D. Lupea Mihaiela	
Date of approval	Signature	ature of the head of department	
	Prof.PhD	Prof.PhD. Pârv Bazil	