SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Departament of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Computer Science			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Fundamentals of Programming							
2.2 Course coordinator Lect. PhD Czibula Istvan Gergely							
2.3 Seminar coordinator				Lect. PhD Czibula Is	tvan	Gergely	
2.4. Year of	1	2.5	1	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	6	Of which: 3.2 course	2	3.3	2 sem
				seminar/laboratory	2 lab
3.4 Total hours in the curriculum	84	Of which: 3.5 course	28	3.6	56
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					8
Evaluations					18
Other activities:					-
3.7 Total individual study hours 66					

3.7 Total individual study nours	00
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	Laboratory with computers; Python programming language environment
activities	

6. Specific competencies acquired

orspeen	te competencies acquirea
	C1.1 Description of programming paradigms and of language specific mechanisms, as well as
_	identification of syntactic and semantic differences.
Professional competencies	C1.2 Explanation of existing software applications, on different levels of abstraction (architecture,
sio	packages, classes, methods) using adequate basic knowledge
ofes upet	C1.3 Elaboration of adequate source codes and testing of components in a given programming
Pro	language, based on some given specifications
)	C1.4 Testing applications based on testing plans
	C1.5 Developing units of programs and corresponding documentations
	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes toward the
al cies	scientific and didactic fields, respecting the professional and ethical principles.
enc	CT3 Use of efficient methods and techniques for learning, information, research and development
Transversal competencies	of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for
ral	communication in Romanian as well as in a widely used foreign language
L D	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To know the basic concepts of software engineering (design, implementation and maintenance of software systems) and to learn Python programming language
7.2 Specific objective of the discipline	 To know the key concepts of programming To know the basic concepts of software engineering (design, implementation and maintenance of software systems) To understand the basic software tools To learn Python programming language, and to get used to Python programming, running, testing, and debugging programs. To acquire and improve the programming style.

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction to software development processes	Interactive exposure	
• What is programming: Algorithm, Program, Basic	Explanation	
Elements Of Python, Python Interpreter, Basic	Conversation	
roles in software engineering	• Examples	
• How to write programs: Problem Statement,	Didactical	
Requirements, Feature Driven Development	demonstration	
Process		
Example: calculator, iteration modeling		
2. Procedural programming	• Interactive exposure	
• Structured types: Lists, Tuples, Dictionaries	Explanation	
• What is a function: Test cases, Definition, Variable	Conversation	
scope, Calls	• Examples	
Passing parameters	Didactical	
Anonymous functions	demonstration	
• How to write functions: Apply test-driven		
development (TDD) steps, Refactorings		
3. Modular programming	• Interactive exposure	
• What is a module: Python module definition,	Explanation	

variable scope in a module, packages, standard	Conversation
 module libraries, deployment How to organize the source code: responsibilities, 	Didactical demonstration
single responsibility principle, separation of concerns, dependency, coupling, cohesion	
 Common layers in an information system logical 	
architecture	
Eclipse+PyDev	Texterne etime annue
 User defined types How to define new data types: encapsulation, 	Interactive exposureExplanation
information hiding (data hiding in Python),	Conversation
guidelines, abstract data types	• Didactical
	demonstration
5. Deployment principlesProblem statement: a program for managing	Interactive exposureExplanation
information (CRUD operations)	Conversation
• Layered architecture: UI layer, Application layer,	Didactical
Domain layer, Infrastructure layer	demonstration
GRASP patternsExample of application development: entity,	
validator, repository, controller	
• Principles: Information Expert, Low Coupling,	
High Cohesion, Protected Variation, Single	
responsibility, Dependency Injection	
6. Object based programming	Interactive exposure
• Objects and classes: classes, objects, fields,	• Explanation
methods, special class methods (operator overloading), Python scope and namespace	Conversation
 UML Diagrams: class diagrams, relationships, 	Didactical demonstration
associations, invariants	demonstration
• Inheritance: UML generalization, code reuse,	
overriding, inheritance in Python	
ExceptionsExample: working with files in Python, repository	
implementation using files	
 7. Program design Top down and bottom up strategies: top down 	Interactive exposure Forelayettee
 Top down and bottom up strategies, top down design, bottom up design, bottom up programming 	ExplanationConversation
style, mixed approach	Didactical
Organizing the UI	demonstration
Class invariants Program testing and inspection	
 8. Program testing and inspection Testing methods: exhaustive testing, black box 	Interactive exposureExplanation
testing, white box testing	Conversation
• Testing levels: unit testing, integration testing	• Didactical
Automated testing, TDD	demonstration
Program inspection: coding style, refactoring 9. Recursion	Interactive exposure
 Notion of recursion 	Interactive exposureExplanation
Direct and indirect recursion	Conversation
• Examples	• Didactical

Algorithms complexity	demonstration	
Definition of complexity		
Complexity as running time		
• Complexity as amount of required supplementary		
memory		
10. Algorithms complexity	• Interactive exposure	
Empiric analysis and asymptotic analysis	• Explanation	
• Asymptotic notation: big-o, little-o, big-omega,	Conversation	
little-omega, theta; properties	Didactical	
Examples of magnitude orders	demonstration	
• Comparison of algorithms from an efficiency point		
of view		
Structural complexity		
11. Backtracking method	Interactive exposure	
• General presentation of the Backtracking method	• Explanation	
• Backtracking algorithm/subalgorithm and	Conversation	
complexity	Didactical	
• Extensions of the Backtracking method	demonstration	
• Examples		
12. Division method	Interactive exposure	
General presentation	Explanation	
• Description of the subalgorithm	Conversation	
• Examples	Didactical	
Search algorithms and their complexity	demonstration	
• specification of the search problem		
 search methods 		
sequential traversal		
 binary search 		
 complexity of search algorithms 		
13 Sort algorithms and their complexity	Interactive exposure	
 Secification of the sort problem 	Explanation	
• Srt methods: BubbleSort, SelectionSort,	Conversation	
InsertionSort, QuickSort, MergeSort	Didactical	
 Cmplexity of sort algorithms 	demonstration	
14. Revision	Interactive exposure	
14. ICVISION	Conversation	
Bibliography	• Conversation	
1. Kent Beck. Test Driven Development: By Example.		002. See also Test-
driven development. <u>http://en.wikipedia.org/wiki/Te</u>		laslav 1000 Sac
2. Martin Fowler. <i>Refactoring. Improving the Design of</i>	y Existing Code. Addison-W	coley, 1999. See
also <u>http://refactoring.com/catalog/index.html</u>	damantala Chi Haironite	Drass 2006
 Frentiu, M., H.F. Pop, Serban G., Programming Fun <i>The Python language reference</i>. <u>http://docs.python.cc</u> 		
 The Python language reference. <u>http://docs.python.c</u> The Python standard library. <u>http://docs.python.org</u> 		<u>111</u>
6. The Python tutorial. http://docs.python.org/tutorial/inc	•••	
8.2 Seminar	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every week
1. Python programs	 Interactive exposure 	
	Interactive exposure Evaluation	
	• Explanation	

	1
	ConversationDidactical
	demonstation
2. Procedural programming	
2. Procedurar programming	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstation
3. Modular programming	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstation
4. User defined types	Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstation
5. Deployment principles	Interactive exposure
5. Deptoyment principles	Explanation
	• Didactical
	demonstation
6. Object based programming	• Interactive exposure
	• Explanation
	Conversation
	Didactical
	demonstation
7. Programs design	Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstation
8. Program testing and inspection	Interactive exposure
	Explanation
	Conversation
	Didactical
	demonstation
9. Recursion. Algorithms complexity	
9. Recursion. Algorithms complexity	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstation
10. Algorithms complexity	• Interactive exposure
	• Explanation
	Conversation
	• Didactical
	demonstation
11. Backtracking	Interactive exposure
	Explanation
	Conversation
	Didactical

	demonstation	
12. Division method. Search algorithms	Interactive exposure	
	Explanation	
	Conversation	
	Didactical	
	demonstation	
13. Preparation for the practical test	Interactive exposure	
	• Explanation	
	Conversation	
	Didactical	
	demonstation	
14: Preparation for the written exam	• Interactive exposure	
	Explanation	
	Conversation	
	Didactical	
	demonstation	
8.3 Laboratory	Teaching methods	Remarks
		• The lab is structured
		as 2 hours classes
		every week.
		• The lab documents are
		due one week after the lab theme has been
		given and the lab
		programs are due two
		weeks later.
		weeks later.
1. Simple Python program	Lab assignment	
	Explanation	
	Conversation	
2. Feature driven software development process	Lab assignment	
	Explanation	
	Conversation	
3. Feature driven software development process	Lab assignment	
	Explanation	
	Conversation	
4. Feature driven software development process	• Lab assignment	
	• Explanation	
	Conversation	
5. Layered architecture	• Lab assignment	
	• Explanation	
	Conversation	
6. Layered architecture	• Lab assignment	
	Explanation	
7 Lavarad arabitaatura	Conversation	
7. Layered architecture	Lab assignment Evaluation	
	Explanation Conversation	
8. Text files	Conversation	
o. reat mes	Lab assignment Evaluation	
	Explanation Conversation	
9. Testing	Conversation	
9. Tostilig	Lab assignment	

	Explanation
	Conversation
10. Algorithms complexity	Lab assignment
	Explanation
	Conversation
11. Backtracking method	Lab assignment
	Explanation
	Conversation
12. Lab delivery time (see remark above)	Lab assignment
	Explanation
	Conversation
13. Lab delivery time (see remark above)	Lab assignment
	Explanation
	Conversation
14. Practical test simulation	Lab assignment
	Explanation
	Conversation
Bibliography	

- 1. Kent Beck. *Test Driven Development: By Example. Addison-Wesley Longman, 2002.* See also Testdriven development. <u>http://en.wikipedia.org/wiki/Test-driven_development</u>
- 2. Martin Fowler. *Refactoring. Improving the Design of Existing Code*. Addison-Wesley, 1999. See also <u>http://refactoring.com/catalog/index.html</u>
- 3. Frentiu, M., H.F. Pop, Serban G., Programming Fundamentals, Cluj University Press, 2006
- 4. The Python language reference. http://docs.python.org/py3k/reference/index.html
- 5. *The Python standard library*. <u>http://docs.python.org/py3k/library/index.html</u>
- 6. The Python tutorial. http://docs.python.org/tutorial/index.html

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the studying program of all major universities in Romania and abroad.
- The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• The correctness and completeness of the accumulated knowledge and the capacity to design and implement correct Python programs	Written exam (in the regular session)	40%
10.5 Seminar/Lab activities	• Be able to design, test and debug a Python program	Practical evaluation (in the regular session)	30%
	• Correctness of Python programs and lab	-documentation -portofolio	30%

	documentations	-continuous observations	
10.6 Minimum performance standards			
• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the,			
that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish			
certain connections and to use the knowledge in solving different problems in Python programming			
language.			
• Successful passing of the exam is conditioned by a minimum grade of 5 at the lab activity, practical test			
and written exam.			

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2014	Lect. dr. Istvan Gergely Czibula	Lect. dr. Istvan Gergely Czibula

Date of approval

Signature of the head of department

Prof. dr. Bazil Pârv