
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş-Bolyai University of Cluj-Napoca

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Departament of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline Fundamentals of Programming

2.2 Course coordinator Lect. PhD Czibula Istvan Gergely

2.3 Seminar coordinator Lect. PhD Czibula Istvan Gergely

2.4. Year of

study

1 2.5

Semester

1 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 6 Of which: 3.2 course 2 3.3

seminar/laboratory

2 sem

2 lab

3.4 Total hours in the curriculum 84 Of which: 3.5 course 28 3.6

seminar/laboratory

56

Time allotment: hours

Learning using manual, course support, bibliography, course notes 14

Additional documentation (in libraries, on electronic platforms, field documentation) 12

Preparation for seminars/labs, homework, papers, portfolios and essays 14

Tutorship 8

Evaluations 18

Other activities: -

3.7 Total individual study hours 66

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum

4.2. competencies

5. Conditions (if necessary)

5.1. for the course Class room with projector

5.2. for the seminar /lab

activities

Laboratory with computers; Python programming language environment

6. Specific competencies acquired

P
r
o

fe
ss

io
n

a
l

c
o

m
p

e
te

n
c
ie

s

C1.1 Description of programming paradigms and of language specific mechanisms, as well as

 identification of syntactic and semantic differences.

C1.2 Explanation of existing software applications, on different levels of abstraction (architecture,

 packages, classes, methods) using adequate basic knowledge

C1.3 Elaboration of adequate source codes and testing of components in a given programming

 language, based on some given specifications

C1.4 Testing applications based on testing plans

C1.5 Developing units of programs and corresponding documentations

T
r
a

n
sv

er
sa

l

c
o

m
p

e
te

n
c
ie

s

CT1 Application of efficient and rigorous working rules, manifest responsible attitudes toward the

 scientific and didactic fields, respecting the professional and ethical principles.

CT3 Use of efficient methods and techniques for learning, information, research and development

 of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for

 communication in Romanian as well as in a widely used foreign language

 7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to software development processes

• What is programming: Algorithm, Program, Basic

Elements Of Python, Python Interpreter, Basic

roles in software engineering

• How to write programs: Problem Statement,

Requirements, Feature Driven Development

Process

• Example: calculator, iteration modeling

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

2. Procedural programming

• Structured types: Lists, Tuples, Dictionaries

• What is a function: Test cases, Definition, Variable

scope, Calls

• Passing parameters

• Anonymous functions

• How to write functions: Apply test-driven

development (TDD) steps, Refactorings

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Examples

•••• Didactical

demonstration

3. Modular programming

• What is a module: Python module definition,

•••• Interactive exposure

•••• Explanation

7.1 General objective of the

discipline

• To know the basic concepts of software engineering (design,

implementation and maintenance of software systems) and to learn

Python programming language

7.2 Specific objective of the

discipline

• To know the key concepts of programming

• To know the basic concepts of software engineering (design,

implementation and maintenance of software systems)

• To understand the basic software tools

• To learn Python programming language, and to get used to Python

programming, running, testing, and debugging programs.

• To acquire and improve the programming style.

variable scope in a module, packages, standard

module libraries, deployment

• How to organize the source code: responsibilities,

single responsibility principle, separation of

concerns, dependency, coupling, cohesion

• Common layers in an information system logical

architecture

• Eclipse+PyDev

•••• Conversation

•••• Didactical

demonstration

1. User defined types

• How to define new data types: encapsulation,

information hiding (data hiding in Python),

guidelines, abstract data types

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

5. Deployment principles

• Problem statement: a program for managing

information (CRUD operations)

• Layered architecture: UI layer, Application layer,

Domain layer, Infrastructure layer

• GRASP patterns

• Example of application development: entity,

validator, repository, controller

• Principles: Information Expert, Low Coupling,

High Cohesion, Protected Variation, Single

responsibility, Dependency Injection

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

6. Object based programming

• Objects and classes: classes, objects, fields,

methods, special class methods (operator

overloading), Python scope and namespace

• UML Diagrams: class diagrams, relationships,

associations, invariants

• Inheritance: UML generalization, code reuse,

overriding, inheritance in Python

• Exceptions

• Example: working with files in Python, repository

implementation using files

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

7. Program design

• Top down and bottom up strategies: top down

design, bottom up design, bottom up programming

style, mixed approach

• Organizing the UI

• Class invariants

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

8. Program testing and inspection

• Testing methods: exhaustive testing, black box

testing, white box testing

• Testing levels: unit testing, integration testing

• Automated testing, TDD

• Program inspection: coding style, refactoring

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

9. Recursion

• Notion of recursion

• Direct and indirect recursion

• Examples

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

Algorithms complexity

• Definition of complexity

• Complexity as running time

• Complexity as amount of required supplementary

memory

demonstration

10. Algorithms complexity

• Empiric analysis and asymptotic analysis

• Asymptotic notation: big-o, little-o, big-omega,

little-omega, theta; properties

• Examples of magnitude orders

• Comparison of algorithms from an efficiency point

of view

• Structural complexity

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

11. Backtracking method

• General presentation of the Backtracking method

• Backtracking algorithm/subalgorithm and

complexity

• Extensions of the Backtracking method

• Examples

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

12. Division method

• General presentation

• Description of the subalgorithm

• Examples

Search algorithms and their complexity

• specification of the search problem

• search methods

• sequential traversal

• binary search

• complexity of search algorithms

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

13 Sort algorithms and their complexity

• Secification of the sort problem

• Srt methods: BubbleSort, SelectionSort,

InsertionSort, QuickSort, MergeSort

• Cmplexity of sort algorithms

•••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstration

14. Revision •••• Interactive exposure

•••• Conversation

Bibliography

1. Kent Beck.Test Driven Development: By Example. Addison-Wesley Longman, 2002. See also Test-

driven development. http://en.wikipedia.org/wiki/Test-driven_development

2. Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999. See

also http://refactoring.com/catalog/index.html

3. Frentiu, M., H.F. Pop, Serban G., Programming Fundamentals, Cluj University Press, 2006

4. The Python language reference. http://docs.python.org/py3k/reference/index.html

5. The Python standard library. http://docs.python.org/py3k/library/index.html

6. The Python tutorial. http://docs.python.org/tutorial/index.html

8.2 Seminar Teaching methods Remarks

 The seminar is

structured as 2 hours

classes every week

1. Python programs •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

2. Procedural programming •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

3. Modular programming •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

4. User defined types •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

5. Deployment principles •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

6. Object based programming •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

7. Programs design •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

8. Program testing and inspection •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

9. Recursion. Algorithms complexity •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

10. Algorithms complexity •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

11. Backtracking •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

12. Division method. Search algorithms •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

13. Preparation for the practical test •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

14: Preparation for the written exam •••• Interactive exposure

•••• Explanation

•••• Conversation

•••• Didactical

demonstation

8.3 Laboratory Teaching methods Remarks

 • The lab is structured

as 2 hours classes

every week.

• The lab documents are

due one week after the

lab theme has been

given and the lab

programs are due two

weeks later.

1. Simple Python program • Lab assignment

• Explanation

• Conversation

2. Feature driven software development process • Lab assignment

• Explanation

• Conversation

3. Feature driven software development process • Lab assignment

• Explanation

• Conversation

4. Feature driven software development process • Lab assignment

• Explanation

• Conversation

5. Layered architecture • Lab assignment

• Explanation

• Conversation

6. Layered architecture • Lab assignment

• Explanation

• Conversation

7. Layered architecture • Lab assignment

• Explanation

• Conversation

8. Text files • Lab assignment

• Explanation

• Conversation

9. Testing • Lab assignment

• Explanation

• Conversation

10. Algorithms complexity • Lab assignment

• Explanation

• Conversation

11. Backtracking method • Lab assignment

• Explanation

• Conversation

12. Lab delivery time (see remark above) • Lab assignment

• Explanation

• Conversation

13. Lab delivery time (see remark above) • Lab assignment

• Explanation

• Conversation

14. Practical test simulation • Lab assignment

• Explanation

• Conversation

Bibliography

1. Kent Beck.Test Driven Development: By Example. Addison-Wesley Longman, 2002. See also Test-

driven development. http://en.wikipedia.org/wiki/Test-driven_development

2. Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999. See

also http://refactoring.com/catalog/index.html

3. Frentiu, M., H.F. Pop, Serban G., Programming Fundamentals, Cluj University Press, 2006

4. The Python language reference. http://docs.python.org/py3k/reference/index.html

5. The Python standard library. http://docs.python.org/py3k/library/index.html

6. The Python tutorial. http://docs.python.org/tutorial/index.html

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.

• The course exists in the studying program of all major universities in Romania and abroad.

• The content of the course is considered the software companies as important for average

programming skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course • The correctness and

completeness of the

accumulated

knowledge and the

capacity to design and

implement correct

Python programs

Written exam (in the regular

session)

40%

• Be able to design, test

and debug a Python

program

Practical evaluation (in the

regular session)

30% 10.5 Seminar/Lab

activities

• Correctness of Python

programs and lab

-documentation

-portofolio

30%

documentations -continuous observations

10.6 Minimum performance standards

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the,

that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish

certain connections and to use the knowledge in solving different problems in Python programming

language.

• Successful passing of the exam is conditioned by a minimum grade of 5 at the lab activity, practical test

and written exam.

Date Signature of course coordinator Signature of seminar coordinator

30.04.2014 Lect. dr. Istvan Gergely Czibula Lect. dr. Istvan Gergely Czibula

Date of approval Signature of the head of department

 Prof. dr. Bazil Pârv

