SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University, Cluj-Napoca
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Licence
1.6 Study programme /	
Qualification	

2. Information regarding the discipline

2.1 Name of th	e di	iscipline	Ca	lculus			
2.2 Course coo	rdii	nator		Conf. dr. Breckne	r Brigitte		
2.3 Seminar coordinator Conf. d			Conf. dr. Breckne	r Brigitte			
2.4. Year of	1	2.5	1	2.6. Type of	Written	2.7 Type of	compulsory
study		Semester		evaluation	Exam	discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	4	Of which: 3.5 course	2	3.6	2
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					34
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					10
Evaluations					10
Other activities:				-	
0.5.5.11.11.11.1.1		0.4			

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

of Specifi	ic competencies acquired
	C4.1 Defining basic concepts, theory and mathematical models
Professional competencies	C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving real-life problems C4.5 Embedding formal models in applications from various areas
	C4.5 Embedding formar models in applications from various areas
	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes
	towards the scientific and didactic fields, respecting the professional and ethical principles.
Transversal competencies	CT3 Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge acquiring, for adapting to the needs of a dynamic society and for communication in Romanian as well as in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquiring knowledge about the algebraic and topological structure of the Euclidean space IRⁿ and the basic notions and results concerning the differential and integral calculus of real-valued functions of several real variables.
7.2 Specific objective of the discipline	•

8. Content

8.1 Course	Teaching methods	Remarks
1. The system of real numbers (upper and lower		
bound of a set; minimum and maximum of a		
set; infimum and supremum of a set; the		
infimum principle, the supremum principle and		
its consequences; the sets of natural numbers,		
the set integer numbers, the set of rational		
numbers, and the set of irrational numbers; the		
extended set of real numbers).		
2. The set of real numbers (absolute value and		
distance; neighborhood of a point). Sequences		
of real numbers (definition of the limit and its		
characterizations; uniqueness of the limit;		
subsequence of a sequence; sandwich theorem;		
the connection between the existence of the		
limit of a sequence and the boundedness of the		
sequence).		
3. Sequences of real numbers (existence of the		
limit for monotone sequences; applications: the		
irrational number e; fundamental sequences;		
Cauchy's convergence criterion). Series of real		
numbers (the sum of a series; operations with		
convergent series; properties of convergent		

series).	
4. Series of real numbers	
(convergence/divergence criteria for series:	
Cauchy's general criterion, Cauchy's	
condensation criterion, comparison criteria, the	
root criterion, Kummer's criterion and its	
consequences, D'Alembert's and Raabe-	
Duhamel's criteria; absolutely convergent	
series; the Leibniz criterion for alternant	
series).	
5. Real-valued functions of a single real variable	
(limits; continuous functions; differentiable	
functions).	
6. Real-valued functions of a single real variable	
(primitives and indefinite integrals; Riemann	
integrability).	
7. Real-valued functions of a single real variable	
(improper integrals: convergence criteria for	
improper integrals).	
8. The euclidean space R^n (algebraic structure;	
inner product and norm; topological structure).	
9. Sequences in R^n (limit of a sequence;	
•	
operations with convergent sequences). Real-	
valued functions of several real variables	
(limits; operations with functions which have	
a limit; continuity; operations with continuous	
functions; Weierstrass' theorem).	
10. Vector-valued functions of several real	
variables (limits; continuity). Differential	
calculus in R^n (the derivative of a vector-	
valued function of a single real variable; the	
mean value theorem for vector-valued	
functions of a single real variable).	
11. Differential calculus in R ⁿ (first order and	
higher order partial derivatives of real-valued	
functions of several real variables; C^1-	
functions; the Schwarz theorem).	
12. Differential calculus in R^n (differentiability of	
real-valued functions of several real variables;	
the mean value theorem; operations with	
differentiable functions; second order	
differentiability).	
13. Differential calculus in R^n (local optima of	
real-valued functions of several real variables;	
necessary and sufficient conditions for local	
optima).	
14. Integral calculus in R^n (Riemann integrability	
of real-valued functions of several real	
variables over compact intervals in R^n).	
Bibliography	

Bibliography

- 1. BRECKNER W. W.: Analiza matematica. Topologia spatiului R^n, Universitatea din Cluj-Napoca, Cluj-Napoca, 1985.
- 2. COBZAS S.: Analiza matematica (Calcul diferential), Presa Universitara Clujeana, Cluj-Napoca, 1998.

- 3. MEGAN M.: Analiza matematica, vol. 1,2. Editura Mirton, Timisoara, 1999.
- 4. MURESAN, M.: A Concret Approach to Classical Analysis, Springer, New York, 2008.
- 5. OBERGUGGENBERGER M. And OSTERMANN A.: Analysis for Computer Scientists, Foundations, Methods, and Algorithms, Springer, 2011.
- 6. sites.google.com/site/brigittebreckner

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The system of real numbers (upper and lower		
bound of a set; minimum and maximum of a		
set; infimum and supremum of a set) and the		
induction principle.		
2. Sequences of reals (operations with convergent		
sequences; typical examples for		
convergent/divergent sequences; computation		
of limits). 3. Series of reals (the irrational number e as the		
sum of some remarkable series; telescopical		
series; computation of the sum of concrete		
series, computation of the sum of concrete series of reals).		
4. Series of reals (application of the presented		
convergence/divergence criteria to check the		
convergence/divergence of some series).		
5. Real-valued functions of a single real variable		
(limits; continuous functions; differentiable		
functions).		
6. Real-valued functions of a single real variable		
(primitives and indefinite integrals; Riemann		
integrability).		
7. Real-valued functions of a single real variable		
(improper integrals: convergence criteria for		
improper integrals).		
8. Exercises and problems related to the algebraic		
and topological structure of R^n.		
9. Limits of sequences in R^n. Real-valued functions of several real variables (limits,		
continuity).		
10. Vector-valued functions of several real		
variables (limits; continuity). Differential		
calculus in R ⁿ (the derivative of a vector-		
valued function of a single real variable).		
11. Differential calculus in R^n (first order and		
higher order partial derivates of real-valued		
functions of several real variables).		
12. Differential calculus in R^n (the chain rule).		
13. Computing local optima of real-valued		
functions of several real variables.		
14. Computing double and triple integrals over		
compact intervals.		

Bibliography

1. DUCA D. I. si E. DUCA: Exercitii si probleme de analiza matematica, vol. I si II, Casa Cartii de Stiinta, Cluj-Napoca, 2007, 2009.

- 2. TRIF T.: Probleme de calcul diferential si integral in R^n, Casa Cartii de Stiinta, Cluj-Napoca, 2003.
- 3. sites.google.com/site/brigittebreckner

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of this course is designed to satisfy the expectations of several networks of professionals of recognised expertise. The results of our students validate this statement.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Exam	Written exam	60%		
10.5 Seminar/lab activities	Continuous evaluation	Evaluation of the weekly	20%		
		activity			
	Midterm test (compulsory)	Midterm test	20%		
10.6 Minimum performance standards 5					
>					
	·	<u>-</u>			

Date	Signature of course coord	inator Signature of seminar coordinator
30.4.2014	Conf. dr. Brigitte Breckner	Conf. dr. Brigitte Breckner
Date of approval	Signature of the head of department	
Prof. dr. Octavian Agrati		Prof. dr. Octavian Agratini