SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Ap				plications of Computa	tional	Linguistics		
2.2 Course coordinator Lecturer PhD. Dana Lupsa								
2.3 Seminar coordinator				Lecturer PhD. Dana Lupsa				
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	Compulsory	
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:	•				hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					11
Evaluations					30
Other activities:					
3.7 Total individual study hours 130					

3.7 Total individual study hours	139
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Average programming skills
	Knowledge of data structures

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	 Laboratory with computers; high level programming language
activities	environment

6. Specific competencies acquired

	- F		ompetencies acquired
=	es	•	Knowledge, understanding and use of IR concepts and their algorithms
Professional	competencies	•	Knowledge, understanding and use of of MT systems
Transversal	competencies	•	Perform Internet-based research. Ability to use techniques specific to information retrieval and machine translation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Advanced knowledge of theoretical, methodological, and practical developments in computer science Systematic use of computer science knowledge to model and interpret new situations, within application contexts larger than the known ones
7.2 Specific objective of the discipline	 Explain basic information storage and retrieval concepts. Describe what issues are specific to efficient information retrieval. Perform Internet-based research. Design and implement a small to medium size information storage and retrieval system, or digital library. Understand techniques for information retrieval, language translation Study the usage of corpora. Identify examples of corpora for MT

8. Content

8.1 Course	Teaching methods	Remarks
1, 2. Information Storage and Retrieval. Evaluation	Exposure, examples,	
	discussion	
3,4. IR Dictionaries and tolerant retrieval.	Exposure,	
	description,	
	explanation,	
	examples, case	
	studies	
5. Link analysis and PageRank	Description,	
	examples, case	
	studies, discussion	
6 High Performance Issues in Web Search	Description,	
Engines	discussion	
7, 8 Machine translation (MT).	Exposure,	
MT: the problem	description,	
MT in practice: resources and processing	explanation,	
Evaluating MT	examples, case	
Directions in MT	studies, discussion	
9. Dictionaries	Description,	
	examples	
10. Translation problems	Exposure, examples,	

	case studies	
11,12. Aplications of Natural Language to	Exposure,	
Information Systems	description,	
	examples, case	
	studies	

Bibliography

- 1. R. Mitkov (Ed), Oxford Handbook of Computational Linguistics. Oxford University Press, 2003.
- 2. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval. Cambridge, England: Cambridge University Press, 2008.
 - http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
- 3. D. Arnold, L. Balkan, S. Meijer, R. Humphreys, L. Sadler, Machine Translation: An Introductory Guide, Manchester, UK: NEC Blackwell, 1994. http://clwww.essex.ac.uk/~doug/book/book.html.

8.2 Seminar / laboratory	Teaching methods Remarks
1,2: Recent advances in CL	Dialogue, examples
3: Web Information Extraction Systems	Dialogue, examples
4: Two Web IR Tools: Clustering and Ranking	Dialogue, case
	studies, examples
5,6: Experimenting translation problems	Case studies,
	examples

Bibliography

- 1. R. Mitkov (Ed), Oxford Handbook of Computational Linguistics. Oxford University Press, 2003.
- 2. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval. Cambridge, England: Cambridge University Press, 2008. http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
- 3. D. Arnold, L. Balkan, S. Meijer, R. Humphreys, L. Sadler, Machine Translation: An Introductory Guide, Manchester, UK: NEC Blackwell, 1994. http://clwww.essex.ac.uk/~doug/book/book.html.
- 4. http://www.mt-archive.info/
- 5. http://www.statmt.org/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Two fields of CL with immediate applications in real life are IR and MT. IR systems are used on an everyday basis by a wide variety of users. The Internet has proven to be a huge stimulus for MT, with hundreds of millions of pages of text and an increasingly global -- and linguistically diverse public.
- The course respects ACM Curriculla Recommendations for Computer Science studies

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	know the basic principle of the domain;apply the course concepts	Written exam	70%			
	- applications of the studied concepts and algorithms	Project evaluation	10%			
10.5 Seminar/lab activities	- apply the course concepts - problem solving	Project evaluation	20%			
10.7 Minimum performance standards						
At least grade 5 (from a scale of 1 to 10) at both written exam and project evaluation						

Date	Signature of course coordinator	Signature of seminar coordinator
	lecturer PhD Dana Lupsa	lecturer PhD Dana Lupsa
Date of approval	Signature of the head of department	