SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Machine Learning							
2.2 Course coordinator Prof. PhD Czibula Gabriela							
2.3 Seminar coordinator Prof. PhD Czibula Gabriela							
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

		1 4144000000000000000000000000000000000			
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					7
Evaluations				16	
Other activities:					
3.7 Total individual study hours		133			
2.0 TD + 1.1		155			

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environement a.s.o.)

6. Specific competencies acquired

Professional competencies	 Advanced ability to approach, model and solve phenomena and problems from nature and economy using fundamental knowledge from mathematics and computer science. Ability to approach and solve complex problems using various techniques of computational intelligence.
Transversal competencies	 Ethic and fair behavior, commitment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negotiation abilities. Entrepreneurial skills; working with economical knowledge; continuous learning
Tran	Good English communication skills

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To provide an introduction to the basic principles, techniques, and applications of Machine Learning.
7.2 Specific objective of the discipline	 To cover the principles, design, implementation and validation of learning programs which improve their performance on some set of tasks by experience. To offer a broad understanding of machine learning algorithms and their use in data-driven knowledge discovery and program synthesis. To offer an understanding of the current state of the art in machine learning in order to conduct original research in machine learning.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Machine Learning.	Interactive exposure	
 Issues in Machine Learning 	Explanation	
 Designing a learning system 	Conversation	
Example	Didactical	
	demonstration	
2. Statistical foundations	Interactive exposure	
 Event space and Probability function 	Explanation	
Elementary Information Theory	Conversation	
• Examples	Didactical	
	demonstration	
3. Decision Tree learning	Interactive exposure	
 Decision tree representation 	Explanation	
 ID3 learning algorithm 	Conversation	
 Statistical measures in decision tree 	Didactical	
learning: entropy, information gain	demonstration	
 Issues in DT learning 		
 Applications 		
4. Artificial Neural Networks	Interactive exposure	
 Neural Network representations 		

 Appropriate problems for Neural Network Learning Perceptrons Multilayer Networks and the Backpropagation algorithm Advanced topics in Artificial Neural Networks Support Vector machines Main idea Linear SVMs Non-linear SVMs Applications 6. Bayesian learning (1) 	 Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure
 Specific problems Bayes theorem Naive Bayes Classifier 	 Explanation Conversation Didactical demonstration
 7. Bayesian learning (2) Bayesian Belief Networks EM algorithm Examples 	 Interactive exposure Explanation Conversation Didactical demonstration
 8. Instance based learning (1) k-Nearest Neighbor learning Locally weighted regression Applications 	 Interactive exposure Explanation Conversation Didactical demonstration
 9. Instance based learning (2) Radial basis functions Case based reasoning 	 Interactive exposure Explanation Conversation Didactical demonstration
 10. Unsupervised Learning (1) Cluster analysis Self organizing maps 	 Interactive exposure Explanation Conversation Didactical demonstration
 11. Unsupervised Learning (2) Hebbian learning Applications 	 Interactive exposure Explanation Conversation Didactical demonstration
 12. Reinforcement Learning The reinforcement learning task Markov Decision Processes Q-learning Temporal Difference learning Applications 	 Interactive exposure Explanation Conversation Didactical demonstration
13. ML research reports presentation 14. ML research reports presentation Bibliography	 Interactive exposure Conversation Interactive exposure Conversation
Dibilography	

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- 2. Russell, J.S, Norvig, P., Artificial Intelligence- A Modern Approach, Prentice- Hall, Inc., New Jersey, 1995
- 3. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 4. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008
- 5. Manning, C., Schutze, H., Foundations of Statistical NLP, MIT Press, 2002
- 6. Cristiani, N., Support Vector and Kernel Machines, BIOwulf Technologies, 2001
- 7. Nillson, N., Introduction to Machine Learning, Stanford University, 1996

8.2 Seminar / laboratory	Teaching methods	Remarks
0.2 commun / mooratory	1 cacining memods	The seminar is
		structured as 2 hours
		classes every second
		week
1. Administration of labs. Survey of the sources of	Interactive exposure	WCCK
information available on Internet and Intranet		
information available on internet and intranet	ExplanationConversation	
2		
2. Survey of the sources of information available on	Documentation	
Internet and Intranet; chosing the paper topic and	• Explanation	
scheduling the presentation.	Conversation	
The first software project (Project 1) will be		
developed using an open source ML software. The		
second project (Project 2) will be fully implemented,		
without using existing ML environments.		
3. Installation of ML software; description of the	Lab assignment	
programming software used, including used features	Explanation	
	• Conversation	
4. Problem definition	Lab assignment	
	Explanation	
	• Conversation	
5. Project 1 demonstration and comments about the	Lab assignment	
solution; problem definition for Project 2	Explanation	
	• Conversation	
6. Comments about the solution and problem analysis	Lab assignment	
for Project 2	Explanation	
	• Conversation	
7. Design documentation; the electronic version of the	Lab assignment	
source code, test files and any other files required to	Explanation	
test Project 2. Project 2 demonstration	• Conversation	
Ribliography		

Bibliography

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- 2. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 3. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the

machine learning field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	A theoretical research report on a learning technique, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%
	The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	40%
	Class attendance	4 unmotivated absences are accepted, but each unmotivated absence other than those specified above are penalised	10%
10.5 Seminar/lab activities	A software project developed using an open source ML software	Evaluation of the project (documentation and demonstration)	15%
	A software project fully implemented, without using existing ML environments.	Evaluation of the project (software implementation, documentation and demonstration)	15%

10.6 Minimum performance standards

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Machine Learning domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

• Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date Signature of course coordinator Signature of seminar coordinator

30.04.2014 Prof. dr. Gabriela Czibula Prof. dr. Gabriela Czibula

Date of approval Signature of the head of department

Prof. dr. Bazil Pârv