SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics and Computer Science in Hungarian
1.4 Field of study	Computer Science
1.5 Study cycle	master
1.6 Study programme /	Databases
Qualification	

2. Information regarding the discipline

2.1 Name of the	e di	scipline	Da	tabase Systems In	npleme	entation	
2.2 Course coordinator Viorica Varga PhD							
2.3 Seminar co	2.3 Seminar coordinator Viorica Varga PhD						
2.4. Year of	1	2.5	2	2.6. Type of	exam	2.7 Type of	required
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					
Evaluations					2
Other activities:					
3.7 Total individual study hours110					

3.7 Total individual study hours	110
3.8 Total hours per semester	152
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

	,
4.1. curriculum	• non
4.2. competencies	 developing applications on relational DBMSs (SQL, relational algebra - completed an introductory course on Databases) sorting/searching techniques (quick/merge sorts, binary trees, hash tables - course on Design and Analysis of Algorithms)

5. Conditions (if necessary)

5.1. for the course • Video projector

6. Specif	6. Specific competencies acquired								
al	• have a good insight into how DBMSs function internally								
ion	• understand how to analyse the performance of data-intensive systems								
fess peto	• be familiar with a variety of programming techniques for large-scale data manipulation								
Professional competencies	• apply the insights achieved to build the major components of a mini-DBMS.								
c J									
	this course give the basics for query optimization								
al cies									
enc									
nsv pet									
Transversal competencies									
ΓŬ									

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The course objective is the presentation of data storage in databases, buffer management, index techniques, query processing and the overview of query optimization in relational databases. The students will be able to understand query processing in relational databases Implementation of a simple Database Management System (DBMS).
7.2 Specific objective of the discipline	 Secondary-storage devices; disk access time; Input/Output model of computation; optimized disk access; File and System Structure: page layout and access; buffer management; file organizations (heap, sorted, clustered); row stores versus column stores; Indexes: Tree-structured (ISAM, B+tree); hash-based (static, extendible, linear); multi-dimensional (UB-tree, k-d-b tree, R-tree) External Sorting: external n-way merge sort; sorting based on B+trees; Query Evaluation: Selection (index-based, hash-based, arbitrary selection predicates); projection (duplicate elimination; hash-based, sorting-based); joins (nested-loops, index nested, block nested, sort-merge, hash joins); set operations; aggregation; impact of buffering, pipelining, blocking; evaluation techniques in existing systems;

8.	Content		
8.	1 Course	Teaching methods	Remarks
1.	The structure of the physical database. The	Presentation	
	structure of the magnetic disc. Optimization of		
	Disk-Block Access. RAID (redundant arrays of		
	independent disks)		
2.	Buffer-replacement policies	Presentation	
3.	File organization: fixed-length records, variable-	Presentation	
	length records, sequential file, heap file, sorted		
	file, multitable clustering file organization. Data		

dictionary storag	ge		
	, dense and sparse indices and	Presentation	
	es. Index Sequential Access		
	ex update. Primary (clustering)		
	unclustering) indices.		
	les. Structure of a B+-tree. Queries	Presentation	
	gorithm for update.		
U	elete in B+-tree. B+-tree file	Presentation	
organization.			
	es. Static hashing, hash indices.	Presentation	
	g: extendable hashing, algorithms		
-	elete in hash files. Comparison of		
ordered indexing			
	cess: using multiple single-key	Presentation	
	on multiple keys, bitmaps indices.		
-	ery processing. Measures of query	Presentation	
	rithm for selection implementation.		
	inary search, using indices,		
	ving comparison)		
10. Algorithms for e		Presentation	
	projection, set operations, outer	Presentation	
	ation implementation.		
0	oin implementation (nested-loop	Presentation	
	ed-loop join, indexed nested-loop		
	, hash join, cost of algorithms).		
•	f algorithms Implementation of	Presentation	
pipelining.			
	ery optimization. Transformation	Presentation	
	pressions, equivalence rules. Join		
-	eration of equivalent expressions.		
	stics of expression results:		
	timation, join size estimation, size		
	ther operations. Materialized view,		
	e and using it in query		
optimization.			
Bibliography			
	Molina, J. D. Ullman, J. Widom: Data	abase Systems - The Complete	te Book, Prentice Hall Upper
Saddle River, New Je	rsey, 2008.		

[R02] R. Ramakrishnan: Database Management Systems, WCB McGraw-Hill, Boston, 2002.

[SKS06]A. Silberschatz, H. Korth, S. Sudarshan: *Database System Concepts*, McGraw-Hill, New York, 2006.

[V06] V. Varga, Interogarea bazelor de date distribuite, Casa Cărții de Știință, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Implementation of a complete single-user		
relational database management system. It		
involves a significant amount of coding. The		
project is highly structured, but there is enough		
slack in the specification so that creativity is both		
allowed and required.It is recommended to		
implement a server component and a client one.		
The client can be implemented as Windows		
interface, Web client or a command line parser.		
2. The Record Management (RM) Component:		
implement a set of functions for managing		

	unordered files of database records. (There is	
	recommended to use binary files to implement	
	unordered files). You can consider fix length	
	records; the management of variable length records	
	is optional. One idea to implement the delete	
	• •	
	operation of a record is the logical delete. It means	
	to store for every record in one bit, which store:	
	the record is deleted or not. In order to not read the	
	whole file to find deleted records and overwrite	
	them with new ones, you can link the deleted	
	records in a stack or queue. The top of the deleted	
	records stack can be stored in the first record of the	
	file. You have to store the system catalog. It will	
	• •	
	contain table names, index file names. For every	
	table the file name, where the table is stored, the	
	structure of the table, the constraints, the	
	associated index files. For every index file, the	
	search key, the type of it. You can implement the	
	catalog in XML file. In Catalog.xml you can find	
	an example.	
3	The Indexing (IX) Component: implement a	
5.	facility for building indexes on records stored in	
	• •	
	unordered files. The indexing facility will be based	
	on B+ trees or dynamic hashing.	
4.	The Indexing (IX) Component: implement a	
	facility for building indexes on records stored in	
	unordered files. The indexing facility will be based	
	on B+ trees or dynamic hashing.	
5.	The System Management (SM) Component: This	
	part will implement various database and system	
	utilities, including data definition commands (at	
	least integer and character data type), including	
	primary key and foreign key constraint (primary	
	key have to be implemented for one or more	
	columns, but foreign key is optional to implement	
	for more than one column), index definition	
	commands and catalog management. For primary	
	key you will create index file automatic. The	
	System Management component will rely on the	
	Record Management and Indexing components	
	from Parts 1 and 2. It also will use a command-line	
(parser or a graphical user interface.	
6.	The Query Language (QL) Component: In this part	
	students will implement a query language, which	
	consists of user-level data manipulation	
	commands, both queries and updates (SQL Select,	
	Insert, Update, Delete can be used). The Query	
	Language component will use a command-line	
	parser or a graphical user interface. The queries	
	have to be processed, using algorithms presented at	
	the course. Features you have to implement in	
	• •	
	Select statement: selection, projection, join of	
	tables, aggregation, cumulative functions,	
	(subquery, order by is optional for extra points).	
7.	Create a database with 3 tables with the project.	

Update the data and run queries.	
Bibliography	
http://inst.eecs.berkeley.edu/~cs186/sp07/projects.html	
http://research.cs.wisc.edu/coral/mini doc/minibase.html	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• This course is in concordance with the program of similar courses in other universities: <u>http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=11782</u> <u>http://www.cs.ox.ac.uk/teaching/courses/databasesystemsimplementation/</u>

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	exam	written test	30	
10.5 Seminar/lab activities	mini DBMS project	solve a problem with the project	70	
10.6 Minimum performance standards				
working mini DBMS project				
➢ 50% in exam				

Date

Signature of course coordinator

.....

Signature of seminar coordinator

..22 April 2013....

assoc. prof. Viorica Varga assoc. prof. Viorica Varga

.....

Date of approval

Signature of the head of department

..... 30 April 2013.....

.....