
SYLLABUS

1. Information regarding the programme
1.1 Higher education
institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /
Qualification

Computer Science - english

2. Information regarding the discipline
2.1 Name of the discipline Computer System Architecture
2.2 Course coordinator Lect. Dr. Vancea Alexandru-Ioan
2.3 Seminar coordinator Lect. Dr. Vancea Alexandru-Ioan
2.4. Year of
study

1 2.5
Semester

1 2.6. Type of
evaluation

E 2.7 Type of
discipline

Compulsory

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 5 Of which: 3.2 course 2 3.3

seminar/laboratory
1 sem +
2 lab

3.4 Total hours in the curriculum 70 Of which: 3.5 course 28 3.6
seminar/laboratory

42

Time allotment: hours
Learning using manual, course support, bibliography, course notes 20
Additional documentation (in libraries, on electronic platforms, field documentation) 10
Preparation for seminars/labs, homework, papers, portfolios and essays 20
Tutorship 10
Evaluations 20
Other activities:
3.7 Total individual study hours 80
3.8 Total hours per semester 150
3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)
4.1. curriculum
4.2. competencies

5. Conditions (if necessary)

5.1. for the course
5.2. for the seminar /lab Laboratory with computers

6. Specific competencies acquired
P

ro
fe

ss
io

na
l

co
m

pe
te

nc
ie

s Knowledge, understanding and use of basic concepts of theoretical Computer Science

T
ra

ns
ve

rs
al

co
m

pe
te

nc
ie

s

 Abilities of a full control of a computing system’s resources and reaching the skills of
optimizing the programs developed in high level programming languages.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content
8.1 Course Teaching methods Remarks

Data representation: elementary data, binary
representation and placement orders, data organizing
and storing (W1), character coding, signed and
unsigned representation, complementary code,
conversions, the concept of overflow (W2);

Computing systems (CS) architecture: organization of
a CS, the central processing unit, the system clock,
computer on n bits, the storage, peripheral devices
(W3), CS performances, the 80x86 microprocessor’s
architecture – structure, registers, address
computation, addressing modes, far addresses and near
addresses (W4);

Exposure, description,
explanation, examples, discussion
of case studies

activities

7.1 General objective of the
discipline

 Knowledge of the computer architecture models, processor
functioning, computer information representation usage

7.2 Specific objective of the
discipline

 Understanding by the students of the computer architecture models,
processor functioning, computer information representation usage

 Initiation in assembler language programming, which will assure the
comprehension of the microprocessor architecture and functioning

 Understanding the basic functions of a computer’s architectural
components and its native low-level workflow. Awareness of the
architectural impact on designing and implementing high level
programming languages.

 Initiation in interrupt systems architecture, with the 80x86 case study

Assembly language elements: the source line format,
expressions, accessing the operands, operators (W5),
directives for defining the segments, for defining data,
LABEL, EQU, PROC, INCLUDE, repetitive blocks
and macros (W6);

Assembly language instructions: transfer instructions,
conversions, signed and unsigned arithmetic
operations, bitwise shifting and rotating, logical
bitwise operations (W7), conditional and
unconditional jump instructions, looping instructions,
string instructions (W8);

Interrupts: classification, specific instructions working
with interrupts, the COM and EXE formats (W9) ;
Interrupts redirection: TSR programs, installing and
deinstalling TSR programs, debugging a TSR
program, interrupts redirection under Windows OS
(W10);

Subprograms call implementation and multimodule
programming: call code, entry code, exit code, the
directives PUBLIC, EXTRN, GLOBAL, linking
TASM modules with modules written in high-level
programming languages (W11);

Low-level programming in high level programming
languages: inserting machine code, inline assemblers,
assembler procedures and functions, accessing
registers and calling interrupts, interrupt procedures
and functions (W12);

x86 extensions: protected mode, architectural
extensions and new instructions added during the
evolution of the 80x86 family of processors (W13);

Assembly programming under Windows: system calls
in protected mode, restrictions imposed on the
interrupt system, MASM and NASM assemblers, the
Visual C++ inline assembler (W14);

Bibliography

1. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura calculatoarelor. Limbajul
de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

2. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj de asamblare
80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

3. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.
 (http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)

4. Boian F. M. Sisteme de operare interactive. Ed. Libris, Cluj, 1994

5. Boian F. M. De la aritmetica la calculatoare. Ed. Presa Universitara Clujeana, Cluj, 1996

6. Boian F. M., Vancea A., Iurian S., Iurian M. Programare avansata de sistem si aplicatii IBM-PC, lito.
Universitatea "Babes-Bolyai", 1996

7. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si
Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare Continua si
Invatamânt la Distanta, Cluj, 2002,

8. Knuth D.E. Tratat de programarea calculatoarelor; vol 3: Algoritmi seminumerici. Ed. Tehnica, Bucuresti,
1985

8.2 Seminar and laboratory Teaching methods Remarks

Data representation: elementary data, binary
representation and placement orders, data organizing
and storing (W1), character coding, signed and
unsigned representation, complementary code,
conversions, the concept of overflow (W2); (seminar
weeks W1/W2);

Computing systems (CS) architecture: organization of
a CS, the central processing unit, the system clock,
computer on n bits, the storage, peripheral devices
(W3), CS performances, the 80x86 microprocessor’s
architecture – structure, registers, address
computation, addressing modes, far addresses and near
addresses (W4); (seminar weeks W3/W4);

Assembly language elements: the source line format,
expressions, accessing the operands, operators (W5),
directives for defining the segments, for defining data,
LABEL, EQU, PROC, INCLUDE, repetitive blocks
and macros (W6); (seminar weeks W5/W6);

Assembly language instructions: transfer instructions,
conversions, signed and unsigned arithmetic
operations, bitwise shifting and rotating, logical
bitwise operations (W7), conditional and
unconditional jump instructions, looping instructions,
string instructions (W8); (seminar weeks W7/W8);

Interrupts: classification, specific instructions working
with interrupts, the COM and EXE formats (W9) ;
Interrupts redirection: TSR programs, installing and
deinstalling TSR programs, debugging a TSR
program, interrupts redirection under Windows OS
(W10); (seminar weeks W9/W10);

Subprograms call implementation and multimodule
programming: call code, entry code, exit code, the
directives PUBLIC, EXTRN, GLOBAL, linking
TASM modules with modules written in high-level
programming languages (W11);

Exposure, description,
explanation, examples, discussion
of case studies

Practical projects

Low-level programming in high level programming
languages: inserting machine code, inline assemblers,
assembler procedures and functions, accessing
registers and calling interrupts, interrupt procedures
and functions (W12); Topics 6 and 7 will be
approached in (seminar weeks W11/W12);

x86 extensions: protected mode, architectural
extensions and new instructions added during the
evolution of the 80x86 family of processors (W13);

Assembly programming under Windows: system calls
in protected mode, restrictions imposed on the
interrupt system, MASM and NASM assemblers, the
Visual C++ inline assembler (W14); topics 8 and 9
will be approached in (seminar weeks W13/W14);

Bibliography

1. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura calculatoarelor. Limbajul
de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

2. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj de asamblare
80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

3. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.
 (http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)

4. Boian F. M. Sisteme de operare interactive. Ed. Libris, Cluj, 1994

5. Boian F. M. De la aritmetica la calculatoare. Ed. Presa Universitara Clujeana, Cluj, 1996

6. Boian F. M., Vancea A., Iurian S., Iurian M. Programare avansata de sistem si aplicatii IBM-PC, lito.
Universitatea "Babes-Bolyai", 1996

7. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si
Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare Continua si
Invatamânt la Distanta, Cluj, 2002,

8. Knuth D.E. Tratat de programarea calculatoarelor; vol 3: Algoritmi seminumerici. Ed. Tehnica, Bucuresti,
1985

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

 The course exists in the studying program of all major universities in Romania and abroad;
 The content of the course is considered by the software companies as important for average

programming skills

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the
grade (%)

10.4 Course - know the basic principle
of the domain;

- application of these
principles for problem
solving

Written exam 60%

Laboratory work 20%10.5 Lab/Seminar
activities

- implementation in
assembly language

Practical exam 20%
10.6 Minimum performance standards

 At least grade 5 at written exam, laboratory work and pratical exam.

Date Signature of course coordinator Signature of seminar coordinator

24.04.2013 Lect. Dr. Vancea Alexandru-Ioan Lect. Dr. Vancea Alexandru-Ioan

Date of approval Signature of the head of department

...…............................

