SYLLABUS

1. Information regarding the programme					
Babe -Bolyai University Cluj-Napoca					
Faculty of Mathematics and Computer Science					
Department of Computer Science					
Computer Science					
Bachelor					
Computer Science					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disciplineS				patial Databases			
2.2 Course coordinator				Lecturer PhD. TRÎMBI	А	Maria-Gabriela	
2.3 Seminar coordinator				Lecturer PhD. TRÎMBI	А	Maria-Gabriela	
2.4. Year of	3	2.5	5	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					23
Additional documentation (in libraries, on electronic platforms, field documentation)					13
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					4
Evaluations					20
Other activities:					-
3.7 Total individual study hours 83					

3.9 Number of ECTS credits5	

4. Prerequisites (if necessary)

4.1. curriculum	Databases	
	Data Structures and Algorithms	
4.2. competencies	Ability to create databases	

5. Conditions (if necessary)

5.1. for the course	Lecture room with video projector
5.2. for the seminar /lab	• Laboratory with computers with MS SQL Server (minimum 2008)
activities	installed

6. Specific competencies acquired

	• Use knowledge of database paradigms to model and solve various real-world problems
ional incies	• Good database design and programming skills
Professional competencies	 Ability to work independently and/or in a team in order to solve problems in defined professional contexts
Transversal competencies	 Execution of the tasks under specified requirements and the deadlines imposed, according to professional ethics and moral conduct Manage tasks according to the generally established objectives Concern for improving the results of professional activity by personal involvement in the activities

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To initiate the students into spatial database problems and concepts To induce practical skills for working with spatial databases and data struktures
7.2 Specific objective of the discipline	 To understand the concept of spatial databases Learn about the components of SDBMS To understand the concept of a query language; improve the skills in using a standard query language (SQL) Learn to use spatial ADTs with SQL Learn to use OGIS spatial ADTs with SQL

8. Content

8.1 Course	Teaching methods	Remarks
1. What is a Spatial Database System (SDBMS)? Terms, Definitions Modeling Spatial Data in Traditional DBMS	Exposure: description, explanation, examples, debate, dialogue	
 Spatial Data Types and Traditional Databases Spatial Data Types and Post-relational Databases How is a SDBMS different from a GIS ? Components of a SDBMS 	Exposure: description, explanation, examples, debate, dialogue	
3. Three Layer Architecture Spatial Taxonomy Data Models	Exposure: description, explanation, examples, debate, dialogue	
 Spatial Concepts and Data Models What is a Data Model? Types of Data Models Models of Spatial Information 	Exposure: description, explanation, examples, debate, dialogue	

5.	Field based Model	Exposure: description,
	Types of Field Operations	explanation, examples,
	Object Model	debate, dialogue
6.	Classifying Spatial objects	Exposure: description,
	Spatial Object Types in OGIS Data Model	explanation, examples,
	Classifying Operations on spatial objects in	debate, dialogue
	Object Model	
	Topological Relationships	
7.	Three-Step Database Design	Exposure: description,
	Extending ER with Spatial Concepts	explanation, examples,
	Conceptual Data Modeling with UML	debate, dialogue
	Comparing UML Class Diagrams to ER	
	Diagrams	
8.	Spatial Query Languages	Exposure: description,
	Standard Database Query Languages	explanation, examples,
	Relational Algebra	debate, dialogue
	Basic SQL Primer	
9.	Query Processing,	Exposure: description,
	Query Optimization	explanation, examples,
		debate, dialogue
10		
10	. Extending SQL for Spatial Data	Exposure: description,
	Example Queries that emphasize spatial aspects	explanation, examples,
	Trends: Object-Relational SQL	debate, dialogue
11	. Spatial Storage and Indexing	Exposure: description,
11	• 0 0	explanation, examples,
	Storage:Disk and Files	debate, dialogue
	Organizing spatial data with space filling curves Grid Files	
	R-tree family	
	N-uee failing	
12	• Spatial Indexing:	Exposure: description,
	Search Data-Structures	explanation, examples,
		debate, dialogue
13	Trends in Spatial Databases	Exposure: description,
	1	debate, dialogue
		,
14	Graded paper in Spatial Databases	Written test
	graphy	

Bibliography

1. SHASHI SHEKHAR, SANJAY CHAWLA, Spatial Databases: A Tour, Prentice Hall, 2003 (ISBN 013-017480-7)

2.MANFRED M. FISCHER, PETER NIJKAMP - Geographic Information Systems, Spatial Modelling and Policy Evaluation, Springer-Verlag GmbH (1993)

3. EMMANUEL STEFANAKIS - Geographic Databases and GIS 2008, Hardcover., ISBN: 978-3-540-22491-4

4. GABRIEL M KUPER, LEONID LIBKIN, JAN PAREDAENS (Editors) - Constraint Databases. Springer 2000, ISBN 3-540-66151-4

5. Applications of Spatial Data Structures: Computer Graphics, Image Processing and Gis (Addison-Wesley series in computer science) (Hardcover), 1989

8.2 Seminar /	laboratory	Teaching methods	Remarks
I.	Getting Started With Microsoft SQL Server 2008 Spatial	Explanation, dialogue, case studies	The laboratory is structured as 2 hours classes every second week
II.	Spatial Datatypes in Microsoft SQL Server 2008: Geometry and Geography	Explanation, dialogue, case studies	
III.	Design of a Spatial DB	Explanation, dialogue, case studies	
IV.	Implementation of SDB	Explanation, dialogue, case studies	
V.	Querying a SDB I	Explanation, dialogue, case studies	
VI.	Querying a SDB II	Explanation, dialogue, case studies	
VII.	Presentation of the personal project		

Bibliography

SERGE ABITEBOUL, RICHARD HULL, VICTOR VIANU Foundations of Databases Addison-Wesley, 1995

MARK DE BERG, OTFRIED CHEONG, MARC VAN KREVELD, MARK OVERMARS, Computational Geometry: Algorithms and Applications Springer, Berlin, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;

• The course exists in the studying program of major universities in Europe and abroad;

• The content of the course is concordant with partial competencies for possible occupations from the Grid 1

- RNCIS

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written test	50%
10.5 Seminar/lab activities	 be able to design and implement a spatial database apply techniques for different classes of real world problems 	Continuous observations Practical project	50%

10.6 Minimum performance standards

The final grade (average between written exam and laboratory work) should be at least grade 5 (from a scale of 1 to 10)

Date	Signature of course coordinator	Signature of seminar coordinator
19.01.2014	Lect. PhD. Maria-Gabriela Trîmbi a	Lect. PhD. Maria-Gabriela Trîmbi a

Date of approval

Signature of the head of department

.....

Prof. Dr. Bazil Pârv