SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the disciplineAlgebraic and Differential Topology							
2.2 Course coordinatorLect. Dr. Liana Topan							
2.3 Seminar coordinator				Lect. Dr. Liana Topan			
2.4. Year of	Π	2.5	4	2.6. Type of	E	2.7 Type of	Elective Course
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	Of which	: 3.2 course	3.3	
4		2	seminar/laboratory	
			2	
3.4 Total hours in the curriculum	Of which	: 3.5 course	3.6	
56		28	seminar/laboratory	
			28	
Time allotment:				
Learning using manual, course support, bibliography, course notes				
Additional documentation (in libraries, on electronic platforms, field documentation)				
Preparation for seminars/labs, homework, papers, portfolios and essays				30
Tutorship				15
Evaluations				20
Other activities:				-
3.7 Total individual study hours	119			-
3.8 Total hours per semester	175	1		

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•	
4.2. competencies	•	Some backgrounds in differential geometry and mathematical
		analysis, as well as theory of manifolds

7

5. Conditions (if necessary)

5.1. for the course	•

5.2. for the seminar /lab
activities

6. Specific competencies acquired

1	
Professional competencies	Ability to understand and manipulate advanced concepts of fundamental mathematical structures. Ability to permanently learn, understand and apply the most recent scientific results. Ability to work independently and/or in a team in order to solve problems in various professional contexts. Ability in verbal and written communication of ideas and knowledge.
Transversal competencies	Ability to transmit and value the studied knowledge and methods. Ability to analyze, understand, approach and modelling problems of mathematical nature from other areas.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Ability to understand and approach problems from this field and to apply particular tools of algebraic and differential topology
7.2 Specific objective of the discipline	The purpose of the course is to present an introduction in algebraic and differential topology and applications.

8. Content

8.1 Course	Teaching methods	Remarks
1. Smooth manifolds: local Euclidean spaces,	Exposure: description,	
topological manifolds, differential manifolds	explanation, examples, proofs	
2. Tangent spaces. Tangent maps	Exposure: description,	
	explanation, examples, proofs	
3. The tangent bundle of a smooth manifold	Exposure: description,	
	explanation, examples, proofs	
4. Partitions of unity	Exposure: description,	
	explanation, examples, proofs	
5. Submanifolds	Exposure: description,	
	explanation, examples, proofs	
6. Manifolds with boundary	Exposure: description,	
	explanation, examples, proofs	
7. Submanifolds of manifolds with boundary	Exposure: description,	
	explanation, examples, proofs	
8. The degree modulo two of a map	Exposure: description,	
	explanation, examples, proofs	
9. Elements of Riemannian geometry	Exposure: description,	
	explanation, examples, proofs	

10. Quotient topologies. Cells attaching	Exposure: description,
	explanation, examples, proofs
11. The groups $\pi_n(X, x_0)$. The fundamental	Exposure: description,
group	explanation, examples, proofs
12. The homotopic invariance of homotopy groups	Exposure: description,
	explanation, examples, proofs
13. Relative homotopy groups	Exposure: description,
	explanation, examples, proofs
14. Fibrations and covering spaces	Exposure: description,
	explanation, examples, proofs

Bibliography

- 1. Do Carmo, M.P., Riemannian Geometry, Birkhäuser,
- 2. Dundas, B.I., Differential Topology, course material, 2007 (http://www.uib.no/People/nmabd/pp/070814dt.pdf)
- 3. Hatcher, A., Algebraic Topology, Cambridge University Press, 2002 (http://www.math.cornell.edu/~hatcher/AT/AT.pdf)
- 4. Nicolaescu, L.I., Lectures on the Geometry of Manifolds, World Scientific, 1996

Additional references

- 1. Conlon, L., Differentiable Manifolds, Birkhäuser, 2001
- 2. Craioveanu, M., Introducere în geometria diferențială, Editura Mirton, 2004
- 3. May, J.P., A Concise Course in Algebraic Topology, Chicago Lectures in Mathematics, 1999
- 4. Postnikov, M., Leçons de géometrie. Varietés différentiables., MIR, 1990
- 5. Sandovici, P., Țarină, M., Geometrie Diferențială, Litografia UBB, Cluj-Napoca, 1974 Sharpe, R.W., Differential Geometry, Springer, 1996

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Examples of smooth manifolds	explanation,	
	examples, proofs	
2. Equivalent definitions for the tangent space of	explanation,	
a smooth manifold	examples, proofs	
3. Vector bundles. Examples	explanation,	
	examples, proofs	
4. Operations with vector bundles	explanation,	
	examples, proofs	
5. The rank theorem. The local inversion theorem	explanation,	
	examples, proofs	
6. Sard's theorem	explanation,	
	examples, proofs	
7. Whitney's theorem (I)	explanation,	
	examples, proofs	
8. Whitney's theorem (II)	explanation,	
	examples, proofs	
9. Existence of Riemann metrics on a manifold	explanation,	
	examples, proofs	
10. Example of quotient spaces	explanation,	
	examples, proofs	
11. Change of base point	explanation,	
	examples, proofs	
12. Computation of the fundamental group of n-	explanation,	
dimensional sphere and n-dimensional torus.	examples, proofs	
Brower's Fixed point theorem. Fundamental		
theorem of algebra.		
13. Exact sequence of homotopy groups of a	explanation,	

topological pair	examples, proofs
14. Fibrations and covering spaces	explanation,
	examples, proofs
Bibliography	
The same as for courses section	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic results of the domain; apply the course concepts and presented tools 	Final written exam	60%
10.5 Seminar/lab activities	-be able to elaborate and	-oral expositions	40%
	defend a small proceeding	-continuous observations	
10.6 Minimum performance standards			
At least grade 5 (from a scale of 1 to 10) after the final exam			

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. Dr. Liana Topan	Lect. Dr. Liana Topan

Date of approval	Signature of the head of department