1.1 Higher education	Babes-Bolyai University					
institution						
1.2 Faculty	Mathematics and Computer SCience					
1.3 Department	Computer Science					
1.4 Field of study	Computer Science					
1.5 Study cycle	Master					
1.6 Study programme /	Intelligent Systems					
Qualification						

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Knowledge Discovery and WEB Semantics							
2.2 Course coordinator Lect. Christian Sacarea, PhD							
2.3 Seminar c	oor	dinator		Lect. Christian Sacarea, PhD			
2.4. Year of	1	2.5	2	2.6. Type of	Е	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1	
				seminar/laboratory	sem	
3.4 Total hours in the curriculum	4	Of which: 3.5	28	3.6	14	
	2	course		seminar/laboratory		
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours 133						

3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 Knowledge Discovery in Wide Area Networks
4.2. competencies	 Good skills in understanding, analyzing, modelling real life problems Programming skills Social and communication skills

5. Conditions (if necessary)

5.1. for the course	•

5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	tenci		•	to offer the main conceptual and computational tools of Artificial Intelligence
_	oetel	ß	•	develop skills for coping with real world problems
	compet	_	٠	develop research abilities
_	ie		•	Ability to analyze a large amount of information
ransversa	ompetencie		•	Ability to communicate with non-experts and to find altogether solutions for real- life problems
F		n N		

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Making available a broad range of methods for Knowledge Representation and Processing, and Knowledge Engineering. To discover the underlying formal structure of knowledge, to derive knowledge. Knowledge landscape paradigm.
7.2 Specific objective of the discipline	 To develop the student's ability to understand the problems involved in the formalization of <i>informal</i> data. To teach practical skills for representing knowledge by computers. To provide practical experience with techniques of structuring graphical representations. To provide techniques for preprocessing data sets, including the concept of a Data Warehouse To provide models for automatically learning methods.

8. Content

o. content		
8.1 Course	Teaching methods	Remarks
1. Triadic FCA. Introduction, general data	Lectures, presentations,	
structure, Examples and triadic	conversations	
concepts.		
2. Triadic FCA. Representation of triadic	Lectures, presentations,	
concepts, Applications to Social	conversations	
Networking		
3. Triadic FCA. Implications and Logic.	Lectures, presentations,	
	conversations	
4. Triadic FCA. Association rules	Lectures, presentations,	
	conversations	
5. Triadic FCA. Factor Analysis	Lectures, presentations,	
	conversations	
6. Conceptual Logic. The Peircean Approach.	Lectures, presentations,	
Conceptual Knowledge Processing revisited	conversations	

7. Conceptual Graphs. Introduction,	Lectures, presentations,
examples, basic rules.	conversations
8. Conceptual Graphs. Concept boxes	Lectures, presentations,
	conversations
9. Conceptual Graphs. Relations	Lectures, presentations,
	conversations
10. Conceptual Graphs and FCA.	Lectures, presentations,
	conversations
11. Power Context Families . Contextual	Lectures, presentations,
Judgement Logic, Semantics of Conceptual	conversations
Graphs, Concept Graph of a Power Context	
Family, Conceptual Contents.	
12. Ontologies, Common sense	Lectures, presentations,
knowledge and language, CYC and	conversations
Ontolingua, Ontologies in E-commerce,	
Applications.	
13. Semantic Web. Semantic Web Impact,	Lectures, presentations,
Knowledge Management.	conversations
14. Semantic Web. Semantic Web	Lectures, presentations,
technologies, OWL.	conversations
Bibliography	

- 1. M. Ester und J. Sander: Knowledge Discovery in Databases: Springer-Verlag, 2000.
- 2. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurasamy: Advances in Knowledge Discovery and Data Mining. Cambridge , London . MIT Press, 1996.
- 3. Frank Vogt, Formal Concept Analysis with C++, Springer, 1996
- 4. Rokia Missaoui, Jürg Schmid, eds., Formal Concept Analysis, Springer LNAI 3874, 2006.
- 5. B. Ganter, R. Wille, Formal Concept Analysis, Mathematical Foundations, Springer 2000.
- 6. G. Antoniou, F. van Harmelen: A Semantic Web Primer. MIT Press, Cambridge 2004.
- 7. Online Course in Knowledge Representation using Conceptual Graphs, Aalborg University, Department of Communication.
- 8. J. Sowa: Knowledge Representation, Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove 2000.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Triadic FCA. Working on data	projects, exercises, individual	
	study, homework	
	assignments.	
2. Triadic FCA. Building own examples	projects, exercises, individual	
	study, homework	
	assignments.	
3. Triadic FCA. Constructing concepts	projects, exercises, individual	
	study, homework	
	assignments.	
4. Triadic FCA. Implications and associations	projects, exercises, individual	

	study, homework
	assignments.
5. Conceptual Graphs. Syntax	projects, exercises, individual
	study, homework
	assignments.
6. Conceptual Graphs. Usage with FCA	projects, exercises, individual
	study, homework
	assignments.
7. Ontologies	projects, exercises, individual
	study, homework
	assignments.

Bibliography

- 1. M. Ester und J. Sander: Knowledge Discovery in Databases: Springer-Verlag, 2000.
- 2. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurasamy: Advances in Knowledge Discovery and Data Mining. Cambridge , London . MIT Press, 1996.
- 3. Frank Vogt, Formal Concept Analysis with C++, Springer, 1996
- 4. Rokia Missaoui, Jürg Schmid, eds., Formal Concept Analysis, Springer LNAI 3874, 2006.
- 5. B. Ganter, R. Wille, Formal Concept Analysis, Mathematical Foundations, Springer 2000.
- 6. G. Antoniou, F. van Harmelen: A Semantic Web Primer. MIT Press, Cambridge 2004.
- 7. Online Course in Knowledge Representation using Conceptual Graphs, Aalborg University, Department of Communication.
- 8. J. Sowa: Knowledge Representation, Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove 2000.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Knowledge discovery is an interdisciplinary area which is broadly needed by all actors from science, economy, industry or research.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Fundamental principles Applying the methods for problem solving	Project	50%
10.5 Seminar/lab activities	Implementing concepts and algorithms Innovation, initiative, team work		50%

10.6 Minimum performance standards	
At least grade 5 (from 1 to 10).	

Date coordinator	Signature of course coordinato	r Signature of seminar
	Lect. Christian Sacarea, PhD	Lect. Christian Sacarea, PhD
Date of approval	Signature of the head of department	
		Univ. Prof. Bazil Parv, PhD.