SYLLABUS

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science, Information Engineering
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	dis	cipline	Knowledge Processing				
2.2 Course coor	2.2 Course coordinator Lect. Christian Sacarea, PhD						
2.3 Seminar coo	ordi	nator		Lect. Christian Sac	area	, PhD	
2.4. Year of	3	2.5	6	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	8		20
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					
Evaluations					8
Other activities:					-
3.7 Total individual study hours 108					
3.8 Total hours per semester 150					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•			
4.2. competencies	Programming skills			

6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	Laboratory with computers
activities	

6. Specific competencies acquired

- Î		Knowledge, understanding and use of basic concepts of theoretical Computer
		Science
Professional competencies		• Understanding of basic concepts of mathematics and use them to problem-solving activities.
		• Knowledge, understanding and use of the fundamental methods, processes and tools of software engineering .
		• Ability to permanently learn, understand and apply the most recent scientific results in the field of Computer Science.
		• Ability to understand and approach problems of modelling nature from other sciences
		Ability to work independently and/or in a team in order to solve problems in defined professional contexts.
		Ability to analyze a large amount of information
ansversal	mperencie	Ability to communicate with non-experts and to find altogether solutions for real-life problems
Tr	C01	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 This course aims to give students a basic understanding about the fundamental principles, concepts and challenges underlying knowledge processing and management. At the end of this course, students will have a thorough theoretical understanding of these issues, and the ability to relate and apply knowledge processing and management theories in the light of simple examples.
7.2 Specific objective of the discipline	 Selected case studies are used to illustrate the utility of knowledge processing and management theories in specific situations, but also to highlight current gaps between knowledge processing and management theory and practice.

8. Content

8.1 Course	Teaching methods	Remarks
 Overview and Motivation (Week 1): Basic motivation and introduction to this course. 	Lectures, presentations, conversations	
 Knowledge Types. Can Knowledge Be Processed? (Week 2): What is knowledge? What forms of knowledge can we identify? We will discuss some basic distinctions and characterizations. 	Lectures, presentations, conversations	
3. From Knowledge Processing to Knowledge Management. (Week 3): What is Knowledge Processing. How can knowledge be processed? We	Lectures, presentations, conversations	

will discuss a series of knowledge management					
perspectives and their implications.					
4. Knowledge Organization (Week 4): How can	Lectures, presentations,				
knowledge be organized? We will discuss some	conversations				
basic principles of knowledge organization, such as					
categorization, taxonomies and concept systems.					
5. Knowledge Bases (Week 5): What kinds of broad	Lectures, presentations,				
knowledge bases exist? We will discuss different	conversations				
forms of knowledge bases and representations.					
such as metadata, wordnet, framenet, cvc					
openmind and others					
6 Formal Concent Analysis (Week 6): An	Lectures presentations				
introduction to the basic model of ECA. We discuss	conversations				
the main representation of a data set as a formal	conversations				
che main representation of a data set as a formal					
concept and the knowledge clustering called					
7. Formal Concept Analysis (Week 7): Many valued	Lectures, presentations,				
contexts, conceptual scaling, logical scaling.	conversations				
Examples.					
8. Formal Concept Analysis (Week 8): The	Lectures, presentations,				
conceptual hierarchy as a knowledge map.	conversations				
9. Knowledge Acquisition (Week 9): How can	Lectures, presentations,				
knowledge be acquired in a way that is amenable	conversations				
to computation and/or analysis? We also discuss					
implications in data sets and algorithm to					
determine the stem base.					
10. Knowledge Transfer (Week 10): How can	Lectures, presentations,				
knowledge transfer be characterized and what	conversations				
factors can influence knowledge transfer?					
11. Knowledge Repositories (Week 11): How can	Lectures, presentations,				
knowledge repositories be designed and	conversations				
deployed? We will discuss concepts such as					
knowledge reuse, discretionary databases.					
experience factories and selected concepts from					
case based reasoning.					
12 Bussiness Oriented Knowledge Management	Lectures presentations				
(Week 12): In this class, we will discuss different	conversations				
approaches aimed at integrating knowledge					
management into an organization's husiness					
nroresses					
13 Knowledge Based Analysis (Mook 12 14): How	Lectures presentations				
can socio technological systems he organized from	convorsations				
a knowledge perspective? We will discuss as	conversations				
a knowledge perspective? We will discuss an					
agent-oriented modeling approach for analyzing					
14 Knowledge Developments.					
14. Knowledge Based Analysis (Week 13-14): How	Lectures, presentations,				
can socio-technological systems be organized from	conversations				
a knowledge perspective? We will discuss an					
agent-oriented modeling approach for analyzing					
knowledge transfer instruments.					
Bibliography					
1. Bernhard Ganter, Rudolf Wille, Formal Concept Analysis, Springer Verlag, 2000					
2. Aldo de Moord, Wilfried Lex, Bernhard Ganter, eds., Conceptual Structures for Knowledge Creation and					

Communication, Springer LNAI 2746, 2003.

3. R. Maier, Knowledge Management Systems, Springer 2007.

4. H. Rollett, Knowledge Management, Processes and Technologies, Kluwer Academic Publishing, 2003.

8.2 Seminar / laboratory		Teaching methods	Remarks
1.	Data – Information - Knowledge	projects, exercises, individual	
		study, homework assignments.	
2.	Knowledge clustering.	projects, exercises, individual	
		study, homework assignments.	
3.	From context to concept.	projects, exercises, individual	
		study, homework assignments.	
4.	Constructing knowledge maps using Toscana.	projects, exercises, individual	
		study, homework assignments.	
5.	Conceptual and logical scaling.	projects, exercises, individual	
		study, homework assignments.	
6.	Conceptual Knowledge Processing in	projects, exercises, individual	
	Bussiness	study, homework assignments.	
7.	Knowledge Management tools.	projects, exercises, individual	
		study, homework assignments.	

Bibliography

1. Bernhard Ganter, Rudolf Wille, Formal Concept Analysis, Springer Verlag, 2000

- 2. Aldo de Moord, Wilfried Lex, Bernhard Ganter, eds., Conceptual Structures for Knowledge Creation and Communication, Springer LNAI 2746, 2003.
- 3. R. Maier, Knowledge Management Systems, Springer 2007.
- 4. H. Rollett, Knowledge Management, Processes and Technologies, Kluwer Academic Publishing, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Knowledge processing is an interdisciplinary area which is broadly needed by all actors from science, economy, industry or research.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Fundamental principles	Project	50%		
	Applying the methods				
	for problem solving				
10.5 Seminar/lab activities	Implementing concepts		50%		
	and algorithms				
	Innovation, initiative,				
	team work				
10.6 Minimum performance standards					
At least grade 5 (from 1 to 10).					

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. Christian Sacarea, PhD	Lect. Christian Sacarea, PhD
Date of approval	Signature of	the head of department
	Univ. Prof. E	Bazil Parv, PhD