SYLLABUS

8 8	
1.1 Higher education	Babe Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline		Optimization Techniques					
2.2 Course coordinator		Assoc. Prof. Nicolae Popovici, Ph.D.					
2.3 Seminar coordinator		Assoc. Prof. Nicolae Popovici, Ph.D.					
2.4. Year of study	2	2.5 Semester	er 4 2.6. Type of evaluation Exam 2.7 Type			2.7 Type of	Optional
					discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14
Time allotment:					
Learning using manual, course suppor	rt, bibl	iography, course notes			20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					10
Evaluations				8	
Other activities:					
3.7 Total individual study hours		58			
3.8 Total hours per semester		100			

ste rotar notirs per sennester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

1	
4.1. curriculum	• Algebra 1 (Linear Algebra)
	• Mathematical Analysis 2 (Differential Calculus on R ⁿ)
4.2. competencies	Basic notions of linear algebra, analytical geometry and differential calculus
	in the n-dimensional Euclidean space

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab activities	Standard infrastructure

6. Specific competencies acquired

Professional competencies	• Knowledge of basic notions and fundamental results from linear optimization, game theory and convex analysis
Transversal competencies	• Ability to model practical problems as optimization problems and to solve them by implementable numerical methods

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The study of the mathematical foundations of several optimization techniques currently used in Operations Research.
7.2 Specific objective of the discipline	 Students should acquire knowledge about: Convex analysis; Linear optimization; Matrix game theory; Convex optimization.

8. Content

8.1 Course	Teaching methods	Remarks
1. Optimization problems in general setting; Classical models	Direct instruction, mathematical proof, exemplification	
2. Level sets; Existence and unicity of optimal solutions	Direct instruction, mathematical proof, exemplification	
3. Convex sets; Extremal points	Direct instruction, mathematical proof, exemplification	
4. Convex functions; Properties of their extrema	Direct instruction, mathematical proof, exemplification	
5. Theorems of the alternatives and separation theorems	Direct instruction, mathematical proof, exemplification	
6. Probleme de Linear optimization problems; interpretation from mathematical economics and geometrical points of view	Direct instruction, mathematical proof, exemplification	
7. Duality in linear optimization; Weak and strong duality theorems	Direct instruction, mathematical proof, exemplification	
8. The Simplex algorithm in primal form	Direct instruction, mathematical proof, exemplification	

9. The Simplex algorithm in dual form	Direct instruction,
	mathematical proof,
	exemplification
10. Matrix games	Direct instruction,
	mathematical proof,
	exemplification
11. The relationship between the matrix games and the	Direct instruction,
linear optimization problems	mathematical proof,
	exemplification
12. Convex optimization problems	Direct instruction,
	mathematical proof,
	exemplification
13. Analytical solution methods for convex	Direct instruction,
optimization problems	mathematical proof,
	exemplification
14. Numerical solution methods for convex	Direct instruction,
optimization problems	mathematical proof,
	exemplification

Bibliography

1. BOYD, S., VANDENBERGHE, L.: Convex Optimization, Cambridge University Press, 2004.

2. BRECKNER, B.E., POPOVICI, N., Convexity and Optimization. An Introduction, EFES, Cluj-Napoca, 2006.

3. BRECKNER, W.W., Cercetare opera ional, Universitatea Babe -Bolyai, Cluj-Napoca, 1981.

4. POPOVICI, N., Optimizare vectoriala, Casa Cartii de Stiinta, Cluj-Napoca, 2005.

5. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, New York, 2008.

8.2 Seminar	Teaching methods	Remarks
1. Special classes of convex sets	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
2. Convex functions; Generalized convexity	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
3. Optimization problems solved by the Simplex	Problem-based	2 hours
algorithm in primal form	instruction, debate,	
	mathematical proofs	
4. Optimization problems solved by the Simplex	Problem-based	2 hours
algorithm in dual form	instruction, debate,	
	mathematical proofs	
5. Matrix games	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
6. Convex optimization problems	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
7. Numerical solution of certain convex optimization	Problem-based	2 hours
problems	instruction, debate,	
	mathematical proofs	

Bibliography

- 1. BRECKNER, B.E., POPOVICI, N., Probleme de analiza convexa in Rⁿ. Casa Cartii de Stiinta, Cluj-Napoca, 2003.
- 2. BRECKNER, B.E., POPOVICI, N., Probleme de cercetare operationala, EFES, Cluj-Napoca, 2006.
- 3. BRECKNER, W.W., DUCA, D., Culegere de probleme de cercetare operationala, Universitatea Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1983.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course ensures a solid theoretical background, according to national and international standards, • within bachelor programmes, on optimization theory, operations research, management, etc.
- The optimization techniques are currently applied in industry, medicine, insurance, etc. •

10.	Evaluare
TO •	L'uluit

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	 intelegerea notiunilor, a rezultatelor teoretice si a metodelor de rezolvare a problemelor de optimizare prezentate la curs; capacitatea de a demonstra principalele rezultate teoretice stabilite la curs. 	Written and viva-voce exam	75%	
10.5 Seminar/lab activities	rezolvarea unor exercitii si probleme cu ajutorul rezultatelor teoretice si a metodelor numerice studiate la curs	Continuous evaluation	25%	
10.6 Minimum performance standards				
The final grade should be greater than or equal to 5.				

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.13	Assoc. Prof. Nicolae Popovici, Ph.D.	Assoc. Prof. Nicolae Popovici, Ph.D.
Date of approval		Signature of the head of department

Signature of the head of department

Prof. Bazil Pârv, Ph.D.