1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-based programming
Qualification	

2. Information regarding the discipline

2.1 Name of the disciplineSoftware architecture							
2.2 Course coordinator Prof.PhD. Bazil Parv							
2.3 Seminar coordinator Prof.PhD.				Prof.PhD. Bazil Pa	rv		
2.4. Year of	2	2.5	2	2.6. Type of	Е	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppo	ort, bił	oliography, course note	s		30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					80
Tutorship					12
Evaluations					12
Other activities:					-
3.7 Total individual study hours 164					
3.8 Total hours per semester 200					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Fundamentals of programming			
	Object-oriented programming			
	Programming paradigms (optional)			
4.2. competencies	Average programming skills			

8

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	Computers, Internet access, UML tool

activities	

6. Specific competencies acquired

-	
l s	 Understanding of the software design from the engineering perspective;
sional encies	 Understanding of the software design concepts and principles
	• Understanding of the software design process and its activities;
les	• Proficient use of tools and languages specific to software systems development
Professional competencie	• Knowing the specifics of main architectural and design patterns and how to apply them to specific projects.
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results, Independent and team work capabilities; able to fulfill different roles Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of software design. Be able to apply the appropriate architectural and design patterns to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students know the main concepts and principles of software design have a good understanding of the following terms: software architecture definition(s), architectural styles and models, architecture definition language(s); detailed design; design pattern, construction design; learn the importance of architectural and detailed design and how to use tools for these tasks; know several software system types (taken from real-world applications) and the best recommended architectural styles and design patterns;

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction to Software Engineering Design.	Exposure, description,	
Motivation and general design concepts.	explanation, debate	
Overview of the software engineering design	and dialogue,	
	discussion of case	
	studies	
2. Software design fundamentals. UML	Exposure, description,	
Fundamentals.	explanation	
3. UML structural modeling. UML behavioral	Exposure, description,	
modeling	explanation, case	
	studies	
4. Fundamentals of software architecture.	Exposure, description,	
Fundamentals of requirements engineering.	explanation, case	
Designing the software architecture	studies	

5.	Overview and history of styles and patterns.	Exposure, description,	
	Data-centered and data-flow systems	explanation, case	
		studies	
6.	Distributed systems. Interactive and	Exposure, description,	
	hierarchical systems	explanation, case	
	ý	studies	
7.	Overview of the detailed design. Structural and	Exposure, description,	
	behavioral design of components	explanation,	
	conditional design of components	discussion of case	
		studies	
8	Creational design patterns in the detailed	Exposure, description,	
0.	design. Abstract Factory. Factory Method	explanation,	
	design. Abstract ractory. ractory Method	discussion of case	
		studies	
0	Creational design nottoms in the detailed		
9.	Creational design patterns in the detailed	Exposure, description,	
	design. Builder. Prototype. Singleton.	explanation, discussion of case	
	Structural design patterns in the detailed		
	design. Adapter. Composite. Facade	studies	
10			
10.	Behavioral design patterns in the detailed	Exposure, description,	
	design. Iterator. Observer. Principles of	explanation,	
	construction design. Flow-, state-, and table-	discussion of case	
	based construction design	studies	
11.	Programming design language, styles, and	Exposure, description,	
	quality evolution. Software design	explanation,	
	management. Design management framework	discussion of case	
		studies	
12.	. Software design management. Planning,	Exposure, description,	
	implementation, and termination. Final review	explanation,	
		discussion of case	
		studies	
Biblio	graphy		
1.	OTERO, C.E.: Software Engineering Design, C	RC Press, 2012.	
	site: http://softwareengineeringdesign.com/Defa	ult.htm	
2.	BASS, L., CLEMENTS, P., KAZMAN R.: Soft	ware Architecture in Prac	ctice, 2nd ed., Addison-
	Wesley, 2003		
3.	KRUCHTEN, PH.: Architectural Blueprints - T	The 4+1 View Model of S	oftware Architecture, IEEE
	Software 12 (6), 1995, pp. 42-50.		
4.	SHAW, M.: The Coming-of-Age of Software A	rchitecture Research, in I	Proc. of the 23rd ICSE,
	IEEE Comp. Soc. 2001, 656, [http://www.cs.cm		
	keynote-rev.pdf]	1	J
5.	SHAW, M., GARLAN, D.: Software Architectu	re: Perspectives on an Er	nerging Discipline.
0.	Prentice-Hall, 1996.		00 =P,
8.2 Ser	minar / laboratory	Teaching methods	Remarks
	Administrivia	Conversation, debate,	Seminar is organized as a
1.		case studies	total of 12 hours -2 hours
			every other week
2	Establishing target application. First	Conversation, debate,	
۷.	miniproject started	case studies, examples	
2		-	
5.	Work on miniproject 1	Exposure, debate, case	
1	Minimula (1 los C 1 1 1 1 1 1 1 1 1 1	studies, examples	
4.	Miniproject 1 due. Second miniproject started	Exposure, debate, case	
		studies, examples	
5.	Work on miniproject 2	Exposure, debate, case	
			•

	studies, examples	
6. Miniproject 2 due. Detailed design issues	Exposure, live demos,	
	examples	
50.00		

Bibliography

Project work: students have to complete two miniprojects, assigned in seminars 2 (software requirements, due date week 7-8) and 3 (software architecture, due date week 11-12).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curricula Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	 know the basic concepts of software design; apply different architectural styles and design patterns to different problem domains 	Written exam	40%			
10.5 Seminar/lab activities	J	-Miniproject 1 work	20%			
	literature regarding software	-Miniproject 2 work	20%			
	design	-Seminar/lab attendance	10%			
	- be able to solve a problem	-Default	10%			
	using different architectural					
	and design patterns					
10.6 Minimum performance standards						
• At least grade 5 (from a scale of 1 to 10) at written exam and project work.						

Date	Signature of course coordinator	Signature of seminar coordinator
April 30, 2013	Prof.PhD. Bazil PARV	Prof.PhD. Bazil PARV

Date of approval

.....

Signature of the head of department

Prof.PhD. Bazil PARV