SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component Based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Software Quality							
2.2 Course coordinator Assoc.Prof.PhD. Simona Motogna							
2.3 Seminar coordinator				Assoc.Prof.PhD. S	imon	a Motogna	
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					70
Tutorship					14
Evaluations					14
Other activities:					-
27 77 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	•	None
4.2. competencies	•	Basic software development skills

5. Conditions (if necessary)

5.1. for the course	• None
5.2. for the seminar /lab	• Computers
activities	

6. Specific competencies acquired

Professional competencies '	 Understanding and working with basic concepts in software engineering; Capability of analysis and synthesis; Proficient use of methodologies and tools specific tosoftware systems Organization of software production processes.
Transversal	 Team work capabilities; able to fulfill different roles Professional communication skills; concise and precisedescription, both oral and written, of professional results, Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of software quality. To be able to apply basic methods for software analysis and software quality assurance.
7.2 Specific objective of the discipline	 At the end of the course, students will acquire theoretical aspects regarding software quality, will be able to define a software quality assurance plan and will be able to apply quality assurance techniques.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction; characteristics, facts and statistics	Exposure, description,	
	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
2. Testing, inspection, walkthrough	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
3. Software quality assurance and SQ Models	Exposure, description,	
	explanation	
4. SQ factors – reliability	Exposure, description,	
	explanation	
5. SQ factors – integrity, security, safety	Exposure, description,	
	explanation	
6. SQ factors – efficiency, maintainability,	Exposure, description,	
flexibility	explanation	
7. SQ factors – portability, reusability,	Exposure, description,	
interoperability	explanation,	
	discussion of case	
	studies	

0.00	I —	
8. SQ metrics and tools	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
9. SQ standards	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
10. SQ standards – cont.	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
11. CMMI	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
12. SQ assurance vs. SQ control	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
13. SQ and software development phases	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
14. Reserved topic		Usualy dedicated to an
ľ		invited guest from a
		software company
Bibliography	ı	1 ,

- 1. D. Galin Software quality assurance From theory to implementation, Addison Wesley, 2003
- 2. S.H. Kan Metrics and models in Software Quality Engineering. Addison Wesley, 2nd ed., 2003
- 3. R.A. Khan, K. Mustafe, S.I. Ahson Software Quality: Concepts and Practice, Alpha Science, 2006
- 4. G. Schulmeyer Handbook of Software Quality Assurance, Artech House, 2007
- 5. D. Spinellis. *Code Quality: The Open Source Perspective*. Addison Wesley, 2006
 6. S. McConnell Code Complete, 2nd Edition, Microsoft Press, 2004

8.2 Seminar / laboratory	Teaching methods	Remarks			
1. Establish project theme	Conversation, debate,	Seminar is organized as a			
	case studies	total of 7 hours – 2 hours			
		every second week			
2. Establish SQ factors (internal) to be followed	Conversation, debate,				
and associated metrics	case studies, examples				
3. Discuss results and refine metrics	Conversation, debate,				
	case studies				
4. Project presentation	Evaluation				
5. Establish theme project	Conversation, debate,				
	case studies				
6. Establish SQ factors (external) to be followed	Conversation, debate,				
and associated metrics	case studies, examples				
7. Project presentation	Evaluation				
Bibliography					
Students will serch and use SQ tools suitable for their project					

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- The course exists at the major universities in Romania offering similar study programs;
- The content of the course is considered by the software companies as important for average software development skills and quality assurance skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	- know the basic principle of	Written exam	50%			
	the domain;					
	- apply the course concepts					
	- problem solving					
10.5 Seminar/lab activities	- be able to implement	-Practical examination				
	course concepts	-documentation				
	- use tools for different SQ	-portofolio				
	aspects	-continous observations				
	- evaluate quality factors for	Laboratory assignments	20%			
	an application	Project	30%			
10.6 Minimum performance standards						
At least grade 5 (from the first section)	om a scale of 1 to 10) at both w	ritten exam and laboratory w	ork.			

Assoc.Prof.PhD. Simona MOTOGNA Assoc.Prof.PhD. Simona MOTOG	Date	Signature of course coordinator	Signature of seminar coordinator	
		Assoc.Prof.PhD. Simona MOTOGNA	NA Assoc.Prof.PhD. Simona MOTOG	NA
Date of approval Signature of the head of department	Date of appro	oval	Signature of the head of department	