
SYLLABUS

1. Information regarding the programme

1.1 Higher education institution Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Bachelor

1.6 Study programme /

Qualification

Computer Science

2. Information regarding the discipline

2.1 Name of the discipline Pragmatic issues in programming

2.2 Course coordinator Lect. PhD. Radu Lupsa

2.3 Seminar coordinator Lect. PhD. Radu Lupsa

2.4. Year of

study

3 2.5

Semester

6 2.6. Type of

evaluation

C 2.7 Type of

discipline

Optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 3 Of which: 3.2 course 2 3.3

seminar/laboratory

1 lab

3.4 Total hours in the curriculum 36 Of which: 3.5 course 24 3.6

seminar/laboratory

12

Time allotment: hours

Learning using manual, course support, bibliography, course notes 20

Additional documentation (in libraries, on electronic platforms, field documentation) 15

Preparation for seminars/labs, homework, papers, portfolios and essays 35

Tutorship 5

Evaluations 2

Other activities: -

3.7 Total individual study hours 77

3.8 Total hours per semester 125

3.9 Number of ECTS credits 5

4. Prerequisites (if necessary)

4.1. curriculum Advanced programming methods

4.2. competencies Average skills in programming.

5. Conditions (if necessary)

6. Specific competencies acquired

5.1. for the course

5.2. for the seminar /lab

activities

Laboratory with computers; high level programming language

environment (C++, Java, .NET, python)

Prof

essio

nal

com

pete

ncies

• Enhance the software design skills.

• Enhance the software development management skills.

• Enhance the software testing and debugging skills.

Tran

svers

al

com

pete

ncies

• Enhance the team working abilities.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Development speed, long-term versus short-

term speed. Complexity as the main asymptotic slow-

down factor. The role of a disciplined, systematic

approach.

Exposure: description,

examples, case-study, debate

2. Programming discipline: Tracking

changes and (automated) testing: goals, issues,

best practices.

Exposure: description,

examples, case-study, debate

3. Programming discipline: One

Responsibility Rule principle, Don’t Repeat

Yourself principle, Coupling and cohesion.

Refactoring.

Exposure: description,

examples, case-study, debate

4. Programming discipline: code

documentation. Pre/post conditions, border

cases, well-chosen identifiers, tools.

Exposure: description,

examples, case-study, debate

5. Programming discipline: Undefined

behaviour, implementation defined behaviour,

premature optimization, good optimization.

Exposure: description,

examples, case-study, debate

6. Programming discipline: defensive

programming. assert() on pre/post conditions

and invariants. Input data validation. Fail fast

principle.

Exposure: description,

examples, case-study, debate

7. Programming discipline: Input data

validation, efficient diagnosing of errors,

secure code.

Exposure: description,

examples, case-study, debate

8. Testing and debugging techniques: IDE

debugger, assert(), core dumps, regression

Exposure: description,

examples, case-study, debate

7.1 General objective of the

discipline
 General improvement of programming efficiency.

 Approach programming from a practical point of view.

7.2 Specific objective

 Improve programming efficiency by using a disciplined

approach;

 Be aware of the time-consuming tasks while programming and

the tools and methods to avoid them.

tests, logging and log filtering.

9. Patterns and techniques: Classes: value

semantic vs. object semantic. Immutable

classes.

Exposure: description,

examples, case-study, debate

10. Patterns and techniques: Constructors,

destructors, resources and invariants. RAII.

Exposure: description,

examples, case-study, debate

11. Patterns and techniques: exceptions.

Exception safety levels.

Exposure: description,

examples, case-study, debate

12. Patterns and techniques: multi-

threading patterns.

Exposure: description,

examples, case-study, debate

Bibliography

 Michael Howard and David LeBlanc: Writing Secure Code, MicrosoftPress, 2003.

 Herb Sutter, Andrei Alexandrescu: C++ Coding Standards: 101 Rules, Guidelines, and Best

Practices. Addison-Wesley, 2010.

 Martin Fowler and others: Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.

 Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

 Andrew Hunt , David Thomas: The Pragmatic Programmer: From Journeyman to Master. Addison-

Wesley, 2000.

 Marshall P. Cline, Greg Lomow, Mike Girou: C++ FAQs (2nd Edition). Addison-Wesley, 1999.

1. Introduction, administrative issues.

Code examples. Programming

discipline: Tracking changes and

(automated) testing.

Dialogue, debate, case study,

guided discovery

2. Programming discipline: One

Responsibility Rule principle, Don’t

Repeat Yourself principle, Coupling

and cohesion. Refactoring. Code

documentation. Pre/post conditions,

border cases, well-chosen identifiers,

tools.

 Dialogue, debate, case study,

guided discovery

3. Programming discipline: Undefined

behaviour, implementation defined

behaviour, premature optimization,

good optimization. Defensive

programming. assert() on pre/post

conditions and invariants. Input data

validation. Fail fast principle.

 Dialogue, debate, case study,

guided discovery

4. Programming discipline: Input data

validation, efficient diagnosing of

errors, secure code. Testing and

debugging techniques: IDE debugger,

assert(), core dumps, regression tests,

logging and log filtering.

 Dialogue, debate, case study,

guided discovery

5. Patterns and techniques: Classes: value

semantic vs. object semantic.

Immutable classes. Constructors,

destructors, resources and invariants.

RAII.

 Dialogue, debate, case study,

guided discovery

6. Patterns and techniques: exceptions. Dialogue, debate, case study,

Exception safety levels. Multi-

threading patterns.

guided discovery

Bibliography

 Michael Howard and David LeBlanc: Writing Secure Code, MicrosoftPress, 2003.

 Herb Sutter, Andrei Alexandrescu: C++ Coding Standards: 101 Rules, Guidelines, and Best

Practices. Addison-Wesley, 2010.

 Martin Fowler and others: Refactoring: Improving the Design of Existing Code. Addison-Wesley,

1999.

 Robert C. Martin: Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

 Andrew Hunt , David Thomas: The Pragmatic Programmer: From Journeyman to Master. Addison-

Wesley, 2000.

1. Marshall P. Cline, Greg Lomow, Mike Girou: C++ FAQs (2nd Edition). Addison-Wesley, 1999.

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The content of the course comes from practical field experience.

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course - -

10.5 Seminar/lab

activities

- know the basic

principles discussed at the

course and know to apply

them;

- recognize the weak spots

in a program;

- find good ways to avoid

the weak spots

Verifying the practical

works.

50%

 - be able to show the

understanding of the

principles in a mini-

project.

Verifying the project 50%

10.6 Minimum performance standards

 At least grade 5 (from a scale of 1 to 10) for the average.

Date Signature of course coordinator Signature of seminar coordinator

.......................... Lect. PhD. Radu Lupsa.............. ..Lect. PhD. Radu Lupsa

Date of approval Signature of the head of department

... …............................

