SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Computer Science/ Intelligent Systems
Qualification	

2. Information regarding the discipline

2.1 Name of the	e di	scipline	Computational Approaches for Natural Language Semantics					
2.2 Course coo	rdin	ator		Lecturer Ph.D. Lupea Mihaiela				
2.3 Seminar co	ordi	inator		Lecturer Ph.D. Lupea Mihaiela				
2.4. Year of	2	2.5	2	2.6. Type of exam 2.7 Type of compulsory				
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					18
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					7
Evaluations					24
Other activities: individual project					25
3.7 Total individual study hours		139			
3.8 Total hours per semester		175			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• the courses: Knowledge Based Systems and Language Technology, Machine learning
4.2. competencies	

7

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Professional competencies	 Knowledge, understanding and use of theoretical concepts, tasks, applications at the semantic level of Natural Language Processing. Apply and use statistic models, artificial intelligence algorithms (clustering, machine learning) and techniques (unsupervised, supervised) to solve different tasks at the semantic level (textual entailment, information retrieval, document summarization, text categorization and segmentation, machine transltion) in NLP domain.
Transversal competencies	 Handling human language by computer needs a semantic approach of the natural language processing. The web space is a semantic one and needs semantic applications as: text categorization, text clustering, concept/entity extraction, sentiment/opinion analysis, document summarization, and entity relation modeling.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To provide the theoretical concepts and techniques for a computational approach of Natural Language Semantics.
	 To understand the current state of the art in Natural Language Processing in order to realize original research in NLP.
7.2 Specific objective of the discipline	 To apply and use statistic models, artificial intelligence algorithms and techniques to solve different tasks at the semantic level (information retrieval, textual entailment, document summarization, text segmentation, text clustering, machine translation) in NLP domain.

8. Content

8.1 Course	Teaching methods	Remarks
1. Textual entailment (TE) as a step of text	Exposure: description,	
understanding. Validation of TE . RTE	explanation, examples,	
contests.	debate, dialogue	
2. Textual entailment (TE)	Exposure: description,	
 methods and approaches 	explanation, examples,	
	debate, dialogue	
3. Text segmentation	Exposure: description,	
	explanation, examples,	
	debate, dialogue	
4. Document summarization	Exposure: description,	
	explanation, examples,	
	debate, dialogue	
5. Multi-document summarization	Exposure: description,	
	explanation, examples,	
	debate, dialogue	
6. Information extraction- Named Entity	Exposure: description,	
Recognition (NER)	explanation, examples,	

	debate, dialogue
7. Information retrieval I	Exposure: description,
	explanation, examples,
	debate, dialogue
8. Information retrieval II	Exposure: description,
	explanation, examples,
	debate, dialogue
9. Text categorization, text clustering	Exposure: description,
	explanation, examples,
	debate, dialogue
10. Students' presentations of the theoretical	Exposure: description,
paper	explanation, examples,
	debate, dialogue
11. Machine translation	Exposure: description,
	explanation, examples,
	debate, dialogue
12. Students' presentations of the practical	Debate, dialogue
project	

Bibliography

- J.ALLEN: Natural language understanding, Benjamin/Cummings Publ., 2nd ed., 1995.
- 2. E. CHARNIAK: "Statistical language learning", MIT press, 1996.
- 3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University, 1994.
- 4. H. Helbig: "Knowledge Representation and the Semantics of Natural Language", Springer, 2006.
- 5. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 6. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.
- 7. (Editor) R. MITKOV: The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 8. S.J.RUSSELL, P.NORVIG: Artificial intelligence. A modern approach, Prentice-Hall International, 1995.
- 9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.
- 10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-0

8.2 Seminar / laboratory	Teaching methods	Remarks
Word similarity measures in WordNet	Explanation, dialogue, case	The seminar/lab is
	studies	structured as 2 hours
		classes every second
		week
2. Students' presentations of a NLP domain and a	Explanation, dialogue, case	
corresponding tool	studies	
3. Working with dedicated tools for NER	Explanation, dialogue, case	
	studies	
4. Boolean model and vector space model in	Explanation, dialogue, case	
Information retrieval – a manual example	studies	
5. Working with tools for machine translation	Explanation, dialogue, case	
	studies	
6. Students' presentations of the practical project.	Explanation, dialogue, case	
	studies	

Bibliography

- 1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html
- 2. Resurse lingvistice in limba romana: www.racai.ro

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program as a graduate course in some major universities in Romania and abroad;
- In the semantic web era, a growing number of semantic applications started to access and interoperate through the internet. Text mining, includes text categorization, text clustering, concept/entity extraction, sentiment analysis, document summarization, and entity relation modeling.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the theoretical concepts of the domain;apply the course methods, algorithms in problem solving	Written exam	40%
10.5 Seminar/lab activities	- know to write an overview of a specific domain	Presentation of a NLP domain and a corresponding tool;	15%
	-know to synthesize and compare different approaches/results of the same studied subject.	Theoretical paper based on recent research papers in NLP domain;	20%
	-be able to implement course algorithms	Practical project - implementation of a NLP tool based on the studied methods	25%
10.6 Minimum performance		1	ı
At least grade 5 (from the first section of the first section).	om a scale of 1 to 10) at all four	r evaluation stages.	

Date	Signature of course coordinator	Signature of seminar coordinator
10.05.2013	Lecturer PhD. Lupea Mihaiela	Lecturer PhD. Lupea Mihaiela
Date of approval	Signature of	f the head of department
	Prof.PhD. I	