SYLLABUS

1. Information regarding th	- Programme
1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6.94 1	
1.6 Study programme /	Computer Science/ Intelligent Systems
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Kn				owledge Based Syste	ems and	l Language T	echnology
2.2 Course coordinator				Lecturer Ph.D. Lupea Mihaiela			
2.3 Seminar coordinator				Lecturer Ph.D. Lupea Mihaiela			
2.4. Year of	1	2.5	2	2.6. Type of	exam	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				40	
Additional documentation (in libraries, on electronic platforms, field documentation)				14	
Preparation for seminars/labs, homework, papers, portfolios and essays				30	
Tutorship			14		
Evaluations			30		
Other activities: individual project			30		
3.7 Total individual study hours		158			•

5.7 Total mai radai staay nouis	100
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Formal languages, Data structures, Machine learning
4.2. competencies	Programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

petencies	• Knowledge, understanding and use of basic concepts, tasks, applications of Language Technology - Natural Language Processing (NLP) domain.
Professional competencies	• Apply and use formal language concepts (grammars, parsing), statistic models (HMM) artificial intelligence algorithms (clustering, machine learning) and techniques (unsupervised, supervised) to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, information extraction, anaphora resolution) in NLP domain.
Transversal competencies	• The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of the NLP domain.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To provide the basic principles, technologies and applications of Language Technology (LT) and Knowledge based systems. To understand the current state of the art in LT in order to realize original research in LT.
7.2 Specific objective of the discipline	• To apply and use formal language concepts, statistic models, artificial intelligence algorithms and techniques to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (word sense disambiguation, information extraction, anaphora resolution) in NLP domain.

8. Content

Teaching methods	Remarks
Exposure: description,	
explanation, examples,	
debate, dialogue	
Exposure: description	
1 1 1	
1 1 1	
debate, dialogue	
Exposure: description,	
explanation, examples,	
debate, dialogue	
	Exposure: description, explanation, examples, debate, dialogue Exposure: description, explanation, examples, debate, dialogue Exposure: description, explanation, examples,

Course 4. Syntactic parsing (2)	Exposure: description,	
- Earley algorithm and the chart parsing	explanation, examples,	
approach.	debate, dialogue	
- Dependency trees		
Course 5. Statistical parsing	Exposure: description,	
-Probabilistic Context-Free Grammars (PCFG);	explanation, examples,	
- Probabilistic CKY (Cocke-Kasami-Yonger) parsing of	debate, dialogue	
PCFGs.		
Course 6. Hidden Markov Model (1)	Exposure: description,	
- Markov chains, Hidden Markov Model(HMM);	explanation, examples,	
- three canonical problems associated with HMM	debate, dialogue	
- the forward algorithm; the Viterbi algorithm		
Course 7. Hidden Markov Model (2)	Exposure: description,	
- the Baum-Welch algorithm for HMM;	explanation, examples,	
- applications to part-of-speech tagging.	debate, dialogue	
Course 8. Information extraction	Exposure: description,	
- tasks, applications, tools	explanation, examples, debate, dialogue	
Course 9. Word Sense Disambiguation (1)	Exposure: description,	
- unsupervised (by clustering);	explanation, examples,	
- dictionary based approach (Lesk, Yarowsky, bilingual	debate, dialogue	
dictionaries).		
Course 10. Word Sense Disambiguation (2)	Exposure: description,	
- machine learning approach;	explanation, examples,	
- the bootstraping algorithm	debate, dialogue	
Course 11. Anaphora resolution (1)	Exposure: description,	
hard constraints and preferencesHobb's algorithm, Lapin and Lease algorithm	explanation, examples, debate, dialogue	
- mood s algorithm, Lapin and Lease algorithm	debate, dialogue	
Course 12. Anaphora and co-reference resolution (2)	Exposure: description,	
- Mitkov's algorithm	explanation, examples,	
- tools for co-reference resolution	debate, dialogue	
Course 13. First-order logic and description logics for	Exposure: description,	
natural language processing.	explanation, examples,	
Course 14	debate, dialogue	
Course 14. Students' presentations of the practical project.	Debate, dialog	
Students presentations of the practical project.		

Bibliography

1. J.ALLEN : Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.

2. E. CHARNIAK: Statistical language learning, MIT press, 1996.

3. B.CARPENTER: ALE: The attribute logic engine. User's guide. Carnegie Mellon University,1994.

4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.

5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.

6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.

7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.

8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
9. D.TATAR: Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2001.

10. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Working with WordNet and Romanian WordNet	Explanation,	The seminar/lab is
	dialogue, case studies	structured as 2 hours
		classes every second week
2. Students' presentations of a NLP domain and a	Dialogue, debate	
corresponding tool		
3. Working with dedicated parsers and taggers	Explanation,	
(Stanford, CST tools, Racai tools)	dialogue, case studies	
4. Students' presentations of the theoretical paper	Dialogue, debate	
5. Working with dedicated tools for information	Explanation,	
extraction	dialogue, case studies	
6. Working with dedicated tools for anaphora and	Explanation,	
co-reference resolution	dialogue, case studies	
7. Students' presentations of the practical project.	Dialogue, debate	
Bibliography		
1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.ht	<u>ml</u>	
2 . Resurse lingvistice in limba romana: <u>www.racai.ro</u>		
1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.ht	<u>ml</u>	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10.	Evaluation

IV. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the
		methods	grade (%)
10.4 Course	- know the theoretical concepts of	Written exam	40%
	the domain;		
	- apply the course methods,		
	algorithms in problem solving		
10.5 Seminar/lab	- know to write an overview of a	Presentation of a NLP	15%
activities	specific domain	domain and a	
	-r · · · · ·	corresponding tool;	
	know to synthesize and compare	Theoretical paper based	20%
	different approaches/results of the	on recent research	
	same studied subject.	papers in NLP domain;	
	- be able to implement course	Practical project -	25%
	algorithms	implementation of a	
		NLP tool based on the	
		studied methods	

10.6 Minimum performance standards ➤ At least grade 5 (from a scale of 1 to 10) at all four evaluation stages.

Date	Signature of course coordinator	Signature of seminar coordinator
10.05.2013	Lecturer Ph.D. Lupea Mihaiela	Lecturer Ph.D. Lupea Mihaiela
Date of approval	Signature of the head of department	
	Prof. PhD. Pârv Bazil	