SYLLABUS

1.1 Higher education	Babes-Bolyai University, Cluj-Napoca			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Computer Science			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Applications of logics							
2.2 Course coordinator Lecturer Ph.D. Lupea Mihaiela							
2.3 Seminar coordinator				Lecturer Ph.D. Lupea Mihaiela			
2.4. Year of	2	2.5	2	2.6. Type ofC2.7 Type ofoptional			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					12
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					6
Evaluations					12
Other activities: individual and collective project				12	
3.7 Total individual study hours 58					•

3.7 Total individual study nours	38
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Computational logic, Data structures and algorithms
4.2. competencies	• Average programming skills in a high level programming
	language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	• Laboratory with computers; high level programming language
activities	environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

of speen	te competencies acquired
Professional competencies	 Knowledge of some basic domains in Computer Science: classical logics (propositional, first-order), temporal, modal and non-monotonic logics from a theoretical perspective theorem proving for classical logics – methods and techniques (strategies, heuristics) for efficient implementation formalization of human and mathematical reasoning using logics programs' verification using logics
Transversal competencies	• Apply classical logics and description logics to solve different tasks in Natural Language Processing (transformation of natural language sentences into predicate formulas, textual entailment, summarization).

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of basic concepts of theoretical Computer Science Ability to work independently and/or in a team in order to solve problems in defined professional contexts. Good programming skills in high-level languages
7.2 Specific objective of the discipline	 Present theoretical concepts of classical logics, modal, temporal and nonmonotonic logics. Use logics for modeling common-sense reasoning, mathematical reasoning and programs' verification. Implement ATP systems as educational tools for theorem proving in mathematics and programs' verification. Understand the applications of logics in solving different tasks of Natural Language domain.

8. Content

8.1 Course	Teaching methods	Remarks
1.Classical logics and their extensions (temporal, modal, non-monotonic). Applications of logics in different domains.	Exposure: description, explanation, examples, discussion of case studies	
2. Automated theorem proving (ATP) systems: architecture, examples.	Exposure: description, explanation, examples, discussion of case studies	
3.Data structures used to represent and manipulate logical formulas.	Exposure: description, explanation, examples, discussion of case studies	
4.Binary decision diagrams in propositional logic.	Exposure: description, explanation, examples, discussion of case studies	
5.Semantic tableaux method – a new approach - Considerations for implementing an ATP system, based on this method.	Exposure: description, explanation, examples, discussion of case studies	

6. Sequent and anti-sequent calculi – two complementary direct proof systems. Considerations for the implementation of an ATP system based on these methods.	Exposure: description, explanation, examples, discussion of case studies
7. Resolution method – refinements (lock, linear, input, unit, ordered);Considerations for implementation.	Exposure: description, explanation, examples, discussion of case studies
8.Semantic resolution (hyper-resolution, the set-of-support strategy, ordered). Heuristics and tree-searching techniques used in implementation.	Exposure: description, explanation, examples, discussion of case studies
9. Formalization of common-sense reasoning (knowledge bases).	Exposure: description, explanation, examples, discussion of case studies
10. Formalization of mathematical reasoning (algebra, geometry).	Exposure: description, explanation, examples, discussion of case studies
11. Using logics in programs' verification	Exposure: description, explanation, examples, discussion of case studies
12. Using classical logics in Natural Language Processing.	Exposure: description, explanation, examples, discussion of case studies
13. Description logics and their applications in Natural Language Processing.	Exposure: description, explanation, examples, discussion of case studies
14.Written paper	

Bibliography

- 1. M. Ben-Ari: Mathematical Logic for Computer Science, Ed. Springer, 2001.
- 2. C.L.Chang, R.C.T.Lee: Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.
- 3. M.Fitting: *First-order Logic and Automated Theorem Proving*, Texts and Monographs in Computer Science, Springer Verlag, 1990, Second Edition 1996.
- 4. M.R. Genesereth, N.J. Nilsson: Logical Foundations of Artificial Intelligence, Morgan Kaufman, 1992.
- 5. D.A. Duffy: Principles of automated theorem proving, John Willey & Sons, 1991.
- 6. M. Lupea, A. Mihis: Logici clasice și circuite logice. Teorie și exemple, ediția 3, Editura Albastra, Cluj-Napoca, 2011.
- 7. L.C. Paulson: Logic and Proof, Univ. Cambridge, 2000, on-line course.
- 8. S.Reeves, M.Clarke: Logic for computer science, Addison Wesley Publisher Ltd, 1990.
- 9. R.M.Smullyan: First-order logic, Revised Edition, Dover Press, New York, 1996.

10. D.Tatar: Inteligenta artificiala: demonstrarea automata si NLP, Editura Microinformatica, Cluj-Napoca, 2001.

8.2 Laboratory	Teaching methods	Remarks
1. Working with some existing theorem provers	Explanation,	The laboratory is
3TAP, ft, Gandalf, LeanTAP, METEOR,	dialogue, case studies	structured as 2 hours
Otter, Prover9, SATURATE, SETHEO,		classes every second week
Vampire, PCProve, Jape, etc.		-

2. Students' individual presentations of a dedicated theorem prover.	Dialog, debate	
3. Data structures for logical formulas – implementation.	Explanation, dialogue, case studies	Teams of 2 students have to implement an ATP system based on one of the studied proof methods. A collective project will incorporate all the teams' projects with an appropriate interface.
 Choose a proof method to implement – specification and implementation. 	Explanation, dialogue, case studies	
5. Build a benchmark of knowledge bases used for common-sense and mathematical reasoning.	Explanation, dialogue, case studies	Each student individually.
6. Build a benchmark of examples of simple programs (transformed in program clauses) used in programs' verification.	Explanation, dialogue, case studies	Each student individually.
7. Students' presentation of the collective project.	Dialog, debate, evaluation	
Bibliography	1007	

1. W.Bibel: Automated theorem proving, View Verlag, 1987.

2. M. Lupea: Theorem proving in classical logics, electronic format, 2009.

3. M. Possega: Deduction Systems, Institute of Informatics, 2002, on-line course.

4. (ed) A.Thayse: From standard logic to Logic Programming, Ed. J.Wiley, vol1(1989), vol2(1989), vol3(1990).

5. http://www.cs.otago.ac.nz/staffpriv/hans/logiccourseware.html

6. <u>http://www-formal.stanford.edu/clt/ARS/systems.html</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of some major universities in Romania and abroad;
- The collective project can be used as an educational tool for theorem proving in mathematics and programs' verification.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the theoretical concepts of the domain; apply the course concepts in problem solving 	Written paper	40%
10.5 Seminar/lab activities	8	Software project – implementation of an ATP system	30%

	-be able to model human and mathematical	Build a benchmark of examples used for testing	20%	
	reasoning	the ATP system		
	-be able to work with a	Presentation of a dedicated	10%	
	prover and to present the	theorem prover		
	theoretical aspects of the			
	implemented method			
10.6 Minimum performance standards				
➢ At least grade 5 (from a scale of 1 to 10) at both written paper and laboratory work.				

Date

Signature of course coordinator

10.05.2013

Lecturer Ph.D. Lupea Mihaiela

Lecturer Ph.D. Lupea Mihaiela

Signature of seminar coordinator

Date of approval

.....

Signature of the head of department

Prof. PhD Pârv Bazil