
SYLLABUS

1. Information regarding the programme
1.1 Higher education
institution

Babes-Bolyai University, Cluj-Napoca

1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Bachelor

1.6 Study programme /
Qualification

Computer Science

2. Information regarding the discipline
2.1 Name of the discipline Applications of logics
2.2 Course coordinator Lecturer Ph.D. Lupea Mihaiela
2.3 Seminar coordinator Lecturer Ph.D. Lupea Mihaiela
2.4. Year of
study

2 2.5
Semester

2 2.6. Type of
evaluation

C 2.7 Type of
discipline

optional

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 3 Of which: 3.2 course 2 3.3

seminar/laboratory
1

3.4 Total hours in the curriculum 42 Of which: 3.5 course 28 3.6
seminar/laboratory

14

Time allotment: hours
Learning using manual, course support, bibliography, course notes 12
Additional documentation (in libraries, on electronic platforms, field documentation) 6
Preparation for seminars/labs, homework, papers, portfolios and essays 10
Tutorship 6
Evaluations 12
Other activities: individual and collective project 12
3.7 Total individual study hours 58
3.8 Total hours per semester 100
3.9 Number of ECTS credits 4

4. Prerequisites (if necessary)
4.1. curriculum • Computational logic, Data structures and algorithms
4.2. competencies • Average programming skills in a high level programming

language

5. Conditions (if necessary)

5.1. for the course
5.2. for the seminar /lab
activities

• Laboratory with computers; high level programming language
environment (.NET or any Java environment a.s.o.)

6. Specific competencies acquired

Pr
of

es
si

on
al

co

m
pe

te
nc

ie
s

• Knowledge of some basic domains in Computer Science:
- classical logics (propositional, first-order), temporal, modal and non-monotonic logics

from a theoretical perspective
- theorem proving for classical logics – methods and techniques (strategies, heuristics)

for efficient implementation
- formalization of human and mathematical reasoning using logics
- programs’ verification using logics

T
ra

ns
ve

rs
al

co

m
pe

te
nc

ie
s

• Apply classical logics and description logics to solve different tasks in Natural Language
Processing (transformation of natural language sentences into predicate formulas, textual
entailment, summarization).

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content
8.1 Course Teaching methods Remarks
1.Classical logics and their extensions (temporal,
modal, non-monotonic). Applications of logics in
different domains.

Exposure: description,
explanation, examples,
discussion of case studies

2. Automated theorem proving (ATP) systems:
architecture, examples.

Exposure: description,
explanation, examples,
discussion of case studies

3.Data structures used to represent and manipulate
logical formulas.

Exposure: description,
explanation, examples,
discussion of case studies

4.Binary decision diagrams in propositional logic.

Exposure: description,
explanation, examples,
discussion of case studies

5.Semantic tableaux method – a new approach -
Considerations for implementing an ATP system,
based on this method.

Exposure: description,
explanation, examples,
discussion of case studies

7.1 General objective of the
discipline

• Knowledge, understanding and use of basic concepts of theoretical
Computer Science

• Ability to work independently and/or in a team in order to solve
problems in defined professional contexts.

• Good programming skills in high-level languages

7.2 Specific objective of the
discipline

• Present theoretical concepts of classical logics, modal, temporal and
nonmonotonic logics.

• Use logics for modeling common-sense reasoning, mathematical
reasoning and programs’ verification.

• Implement ATP systems as educational tools for theorem proving in
mathematics and programs’verification.

• Understand the applications of logics in solving different tasks of
Natural Language domain.

6. Sequent and anti-sequent calculi – two
complementary direct proof systems. Considerations
for the implementation of an ATP system based on
these methods.

Exposure: description,
explanation, examples,
discussion of case studies

7. Resolution method – refinements (lock, linear,
input, unit, ordered);
Considerations for implementation.

Exposure: description,
explanation, examples,
discussion of case studies

8.Semantic resolution (hyper-resolution, the
set-of-support strategy, ordered). Heuristics and
tree-searching techniques used in implementation.

Exposure: description,
explanation, examples,
discussion of case studies

9. Formalization of common-sense reasoning
(knowledge bases).

Exposure: description,
explanation, examples,
discussion of case studies

10. Formalization of mathematical reasoning (algebra,
geometry).

Exposure: description,
explanation, examples,
discussion of case studies

11. Using logics in programs’ verification Exposure: description,
explanation, examples,
discussion of case studies

12. Using classical logics in Natural Language
Processing.

Exposure: description,
explanation, examples,
discussion of case studies

13. Description logics and their applications in Natural
Language Processing.

Exposure: description,
explanation, examples,
discussion of case studies

14.Written paper

Bibliography
1. M. Ben-Ari: Mathematical Logic for Computer Science, Ed. Springer, 2001.
2. C.L.Chang, R.C.T.Lee: Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.
3. M.Fitting: First-order Logic and Automated Theorem Proving, Texts and Monographs in Computer

Science, Springer Verlag, 1990, Second Edition 1996.
4. M.R. Genesereth, N.J. Nilsson: Logical Foundations of Artificial Intelligence, Morgan Kaufman, 1992.
5. D.A. Duffy: Principles of automated theorem proving, John Willey & Sons, 1991.
6. M. Lupea, A. Mihis: Logici clasice şi circuite logice. Teorie şi exemple, ediţia 3, Editura Albastra,
 Cluj-Napoca, 2011.
7. L.C. Paulson: Logic and Proof, Univ. Cambridge, 2000, on-line course.
8. S.Reeves, M.Clarke: Logic for computer science, Addison Wesley Publisher Ltd, 1990.
9. R.M.Smullyan: First-order logic, Revised Edition, Dover Press, New York, 1996.
10. D.Tatar: Inteligenta artificiala: demonstrarea automata si NLP, Editura Microinformatica, Cluj-Napoca,
2001.

8.2 Laboratory Teaching methods Remarks

1. Working with some existing theorem provers
3TAP, ft, Gandalf, LeanTAP, METEOR,
Otter, Prover9, SATURATE, SETHEO ,
Vampire, PCProve, Jape, etc.

Explanation,
dialogue, case studies

The laboratory is
structured as 2 hours
classes every second week

2. Students’ individual presentations of a
dedicated theorem prover.

Dialog, debate

3. Data structures for logical formulas –
implementation.

Explanation,
dialogue, case studies

Teams of 2 students have
to implement an ATP
system based on one of the
studied proof methods.
 A collective project will
incorporate all the teams’
projects with an
appropriate interface.

4. Choose a proof method to implement –
specification and implementation.

Explanation,
dialogue, case studies

5. Build a benchmark of knowledge bases used
for common-sense and mathematical
reasoning.

Explanation,
dialogue, case studies

Each student individually.

6. Build a benchmark of examples of simple
programs (transformed in program clauses)
used in programs’ verification.

Explanation,
dialogue, case studies

Each student individually.

7. Students’ presentation of the collective project. Dialog, debate,
evaluation

Bibliography
1. W.Bibel: Automated theorem proving, View Verlag, 1987.
2. M. Lupea: Theorem proving in classical logics, electronic format, 2009.
3. M. Possega: Deduction Systems, Institute of Informatics, 2002, on-line course.
4. (ed) A.Thayse: From standard logic to Logic Programming, Ed. J.Wiley, vol1(1989), vol2(1989),
vol3(1990).
5. http://www.cs.otago.ac.nz/staffpriv/hans/logiccourseware.html
6. http://www-formal.stanford.edu/clt/ARS/systems.html

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
• The course exists in the studying program of some major universities in Romania and abroad;
• The collective project can be used as an educational tool for theorem proving in mathematics and

programs’verification.

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)
10.4 Course - know the theoretical

concepts of the domain;
- apply the course
concepts in problem
solving

Written paper 40%

10.5 Seminar/lab activities - be able to implement
course concepts and
algorithms
- apply techniques for
different classes of
programming languages

Software project –
implementation of an ATP
system

 30%

-be able to model human
and mathematical
reasoning

Build a benchmark of
examples used for testing
the ATP system

 20%

-be able to work with a
prover and to present the
theoretical aspects of the
implemented method

Presentation of a dedicated
theorem prover

 10%

10.6 Minimum performance standards
 At least grade 5 (from a scale of 1 to 10) at both written paper and laboratory work.

Date Signature of course coordinator Signature of seminar coordinator

10.05.2013 Lecturer Ph.D. Lupea Mihaiela Lecturer Ph.D. Lupea Mihaiela

Date of approval Signature of the head of department

... Prof. PhD Pârv Bazil

