SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Intelligent Systems
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Machine Learning							
2.2 Course coordinator Prof. PhD Czibula Gabriela							
2.3 Seminar coordinator				Prof. PhD Czibula Gabriela			
2.4. Year of	1	2.5	1	2.6. Type of E 2.7 Type of Compulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					7
Evaluations					16
Other activities:					
3.7 Total individual study hours 133					•
3.8 Total hours per semester		175			
3.9 Number of ECTS credits		7			

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (.NET or any Java environement a.s.o.)

6. Specific competencies acquired

nal	Understanding the concepts, methods and models used in Machine Learning.
etenc	• Understanding the principles, design, implementation and validation of learning systems.
Professional competencies	Learning to conduct incipient original research in machine learning.
	The ability to apply machine learning techniques in solving real world problems.
	Responsible execution of lab assignments, research and practical reports.
al ies	Application of efficient and rigorous working rules.
Fransversal	Manifest responsible attitudes toward the scientific and didactic fields.
Transversal	Respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To provide an introduction to the basic principles, techniques, and applications of Machine Learning.
7.2 Specific objective of the discipline	 To cover the principles, design, implementation and validation of learning programs which improve their performance on some set of tasks by experience. To offer a broad understanding of machine learning algorithms and their use in data-driven knowledge discovery and program synthesis. To offer an understanding of the current state of the art in machine learning in order to conduct original research in machine learning.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Machine Learning.	Interactive exposure	
 Issues in Machine Learning 	Explanation	
 Designing a learning system 	 Conversation 	
• Example	Didactical	
	demonstration	
2. Statistical foundations	 Interactive exposure 	
 Event space and Probability function 	Explanation	
Elementary Information Theory	 Conversation 	
• Examples	Didactical	
	demonstration	
3. Decision Tree learning	 Interactive exposure 	
 Decision tree representation 	Explanation	
 ID3 learning algorithm 	 Conversation 	
 Statistical measures in decision tree 	Didactical	
learning: entropy, information gain	demonstration	
 Issues in DT learning 		
 Applications 		
4. Artificial Neural Networks	 Interactive exposure 	
 Neural Network representations 	Explanation	
 Appropriate problems for Neural Network 		

LearningPerceptronsMultilayer Networks and the	ConversationDidactical demonstration
Backpropagation algorithmAdvanced topics in Artificial Neural Networks	
5. Support Vector machines	Interactive exposure
Main idea	Explanation
 Linear SVMs 	Conversation
 Non-linear SVMs 	Didactical
 Applications 	demonstration
6. Bayesian learning (1)	Interactive exposure
Specific problems	• Explanation
Bayes theorem	Conversation
 Naive Bayes Classifier 	Didactical
Traire Buyes classifier	demonstration
7. Bayesian learning (2)	Interactive exposure
Bayesian Belief Networks	Explanation
EM algorithm	• Conversation
• Examples	Didactical
Liamples	demonstration
8. Instance based learning (1)	
• k-Nearest Neighbor learning	• Interactive exposure
Locally weighted regression	ExplanationConversation
·	
Applications	• Didactical
0. Instance hazad learning (2)	demonstration
9. Instance based learning (2)Radial basis functions	• Interactive exposure
	• Explanation
Case based reasoning	• Conversation
	• Didactical
10 II	demonstration
10. Unsupervised Learning (1)	Interactive exposure
• Cluster analysis	• Explanation
Self organizing maps	Conversation
	Didactical
	demonstration
11. Unsupervised Learning (2)	Interactive exposure
Hebbian learning	Explanation
 Applications 	Conversation
	Didactical
	demonstration
12. Reinforcement Learning	Interactive exposure
The reinforcement learning task Madaga Parining Property.	Explanation
Markov Decision Processes O learning	Conversation
 Q-learning Temporal Difference learning	Didactical
Applications	demonstration
13. ML research reports presentation	Interactive exposure
10. WIE research reports presentation	Conversation
14. ML research reports presentation	Interactive exposure
14. 1412 research reports presentation	Conversation
Bibliography	Conversation
Zionogi upuj	

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- 2. Russell, J.S, Norvig, P., Artificial Intelligence- A Modern Approach, Prentice- Hall, Inc., New Jersey, 1995
- 3. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 4. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008
- 5. Manning, C., Schutze, H., Foundations of Statistical NLP, MIT Press, 2002
- 6. Cristiani, N., Support Vector and Kernel Machines, BIOwulf Technologies, 2001
- 7. Nillson, N., Introduction to Machine Learning, Stanford University, 1996

8.2 Seminar / laboratory	Teaching methods	Remarks
		The seminar is
		structured as 2 hours
		classes every second
		week
1. Administration of labs. Survey of the sources of	Interactive exposure	
information available on Internet and Intranet	Explanation	
	Conversation	
2. Survey of the sources of information available on	Documentation	
Internet and Intranet; chosing the paper topic and	Explanation	
scheduling the presentation.	• Conversation	
The first software project (Project 1) will be		
developed using an open source ML software. The		
second project (Project 2) will be fully implemented,		
without using existing ML environments.		
3. Installation of ML software; description of the	Lab assignment	
programming software used, including used features	Explanation	
	• Conversation	
4. Problem definition	Lab assignment	
	Explanation	
	Conversation	
5. Project 1 demonstration and comments about the	Lab assignment	
solution; problem definition for Project 2	Explanation	
	• Conversation	
6. Comments about the solution and problem analysis	Lab assignment	
for Project 2	Explanation	
	• Conversation	
7. Design documentation; the electronic version of the	Lab assignment	
source code, test files and any other files required to	• Explanation	
test Project 2. Project 2 demonstration	• Conversation	

Bibliography

- 1. Mitchell, T., Machine Learning, McGraw Hill, 1997
- 2. Sutton, R.S., Barto, A.G., Reinforcement learning, The MIT Press Cambridge, Massachusetts, London, England, 1998
- 3. Gabriela Czibula, Sisteme inteligente. Instruire automata, Ed. Risoprint, Cluj-Napoca, 2008

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the machine learning field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	A theoretical research report on a learning technique, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%
	The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	40%
	Class attendance	4 unmotivated absences are accepted, but each unmotivated absence other than those specified above are penalised	10%
10.5 Seminar/lab activities	A software project developed using an open source ML software	Evaluation of the project (documentation and demonstration)	15%
10.6 Minimum performance	A software project fully implemented, without using existing ML environments.	Evaluation of the project (software implementation, documentation and demonstration)	15%

10.6 Minimum performance standards

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Machine Learning domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date Signature of course coordinator Signature of seminar coordinator

30.04.2013 Prof. dr. Gabriela Czibula Prof. dr. Gabriela Czibula

Date of approval Signature of the head of department

Prof. dr. Bazil Pârv