SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Dynamical Systems				
2.2 Course coordinator Conf. dr. Adriana Buica							
2.3 Seminar coordinator Conf. dr. Adriana Buica							
2.4. Year of	1	2.5	2	2.6. Type of E 2.7 Type of compulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	14/14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					5
Evaluations					20
Other activities:					
0.55		120			

3.7 Total individual study hours	120
3.8 Total hours per semester	176
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis
4.2. competencies	 Calculate derivatives and integrals for real functions

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	Computers for the laboratory acitvity
activities	

6. Specific competencies acquired

	e competencies acquired
Professional competencies	 Understanding of basic concepts of dynamical systems theory and use them to problem-solving activities Ability to understand and approach problems of modeling nature from other sciences
Transversal competencies	Ability to work independently and/or in a team in order to solve problems in defined professional contexts

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Introduction to the basic problems of dynamical systems theory as well as the discussion of some related mathematical models
7.2 Specific objective of the discipline	• To understand the concepts of equilibrium point, orbit, periodic orbit, stability, chaos and to operate with them at least in some simple situations.

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to differential equations (notions, initial conditions, boundary conditions, examples, fundamental problems)	Exposure: description, explanation, examples, dialogue	
Linear differential equations (existence and uniqueness theorem, fundamental theorems)	Exposure: description, explanation, examples, dialogue	
Linear differential equations with constant coefficients.	Exposure: description, explanation, examples, dialogue	
 Linear differential equations. Applications (Newton's law of cooling, Pendulum equation, Harmonic oscillations) 	Exposure: description, explanation, examples, dialogue	
 The dynamical system generated by a differential equation (main notions and first examples) 	Exposure: description, explanation, examples, dialogue	
 Stability of equilibria (definition, examples, stability of linear systems, the linearization method) 	Exposure: description, explanation, examples, dialogue	
7. Approximate solutions for differential equations (power series solutions, succesive approximations)	Exposure: description, explanation, examples, dialogue	
Numerical methods for ordinary differential equations (Euler and Runge-Kutta numerical formulas)	Exposure: description, explanation, examples, dialogue	
Linear recurrences (difference equations) with constant coefficients (fundamental theorems, Fibonacci sequence)	Exposure: description, explanation, examples, dialogue	
10. Linear systems of difference equations	Exposure: description,	

(convergent matrix, complex notation)	explanation, examples,
	dialogue
11. Nonlinear scalar discrete dynamical systems	Exposure: description,
(notions, examples, stability of a fixed point)	explanation, examples,
	dialogue
12. The logistic map. Euler numerical formula	Exposure: description,
revisited.	explanation, examples,
	dialogue
13. Higher dimensional discrete dynamical	Exposure: description,
systems (notions, examples, stability of the	explanation, examples,
fixed points).	dialogue
14. An overview. Free discussions on the	Exposure: description,
importance of the field of dynamical systems in	explanation, examples,
understanding the physical phenomena.	dialogue

Bibliography

- 1. P. Blanchard, R.L. Devaney, G.R. Hall, Differential Equations, Brooks/Cole, Cengage Learning, 2012.
- 2. S. Lynch, Dynamical systems with applications using MAPLE, Birkhauser, 2001.
- 3. Gh. Micula, P. Pavel, Ecuatii diferentiale si integrale prin probleme si exercitii, Ed. Dacia, Cluj-Napoca,1989.
- 4. E.R. Scheinerman, Invitation to Dynamical Systems, internet version freely available at http://www.ams.jhu.edu/~ers/invite.html

5. Jon H. Davis, Differential Equations with MAPLE: an Interactive Approach, Birkhäuser, 2001

8.2 Seminar / laboratory	Teaching methods	Remarks
 Seminar 1. Linear homogeneous differential equations with constant coefficients. General solutions and properties of solutions (periodicity, oscillations, boundedness) 	Explanation, dialogue, examples	
Laboratory 1. Introduction to Maple. Basic notions.	Explanation, dialogue, examples	
 Seminar 2. Linear differential equations (the method of undetermined coefficients, the Lagrange method). 	Explanation, dialogue, examples	
 Laboratory 2. The use of Maple to find the general solution of linear differential equations, to solve initial and boundary value problems and to study the properties of solutions 	Explanation, dialogue, examples	
5. Seminar 3. Linear differential equations. Test.	Explanation, dialogue, examples	
 Laboratory 3. The use of Maple to find the general solution to Euler equations and to linear systems. Power series method. 	Explanation, dialogue, examples	
Seminar 4. Phase portraits of scalar nonlinear dynamical systems and planar linear systems.	Explanation, dialogue, examples	
Laboratory 4. Orbits and direction fields of planar systems.	Explanation, dialogue, examples	
Seminar 5. Stability of linear systems and of equilibria of nonlinear systems.	Explanation, dialogue, examples	
 Laboratory 5. First integrals of planar systems around equilibria of center type. 	Explanation, dialogue, examples	
 Seminar 6. Test. Introduction to linear recurrences. 	Explanation, dialogue, examples	
12. Laboratory 6. Numerical methods.	Explanation, dialogue, examples	
13. Seminar 7. Linear recurrences.	Explanation, dialogue, examples	
14. Laboratory 7. Final test.	test	

Bibliography

- 1. P. Blanchard, R.L. Devaney, G.R. Hall, Differential Equations, Brooks/Cole, Cengage Learning, 2012.
- 2. S. Lynch, Dynamical systems with applications using MAPLE, Birkhauser, 2001.
- 3. Gh. Micula, P. Pavel, Ecuatii diferentiale si integrale prin probleme si exercitii, Ed. Dacia, Cluj-Napoca,1989.
- 4. E.R. Scheinerman, Invitation to Dynamical Systems, internet version freely available at http://www.ams.jhu.edu/~ers/invite.html
- 5. Jon H. Davis, Differential Equations with MAPLE: an Interactive Approach, Birkhäuser, 2001

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of this discipline is synchronized with the curriculum of most of the important universities from our country and from abroad where the applied mathematics plays an important role.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	To know the notions and their properties by examples or counterexamples. To be able to apply the theoretical results in concrete problems.	Exam	65%
10.5 Seminar/lab activities	Solving problems skills	Two tests	20%
	Interest and implication in each lab activity. One final test in the last lab.	Dialogue in each lab and one final test	15%

10.6 Minimum performance standards

Date Signature of course coordinator Signature of seminar coordinator

30-04-2013 Conf. dr. Adriana Buica Conf. dr. Adriana Buica

Date of approval Signature of the head of department

30-04-2013 Prof. dr. Octavian Agratini

Presence at least at 90% from the lab activities, at least 10% points from the lab activity, at least 15% points from the written final exam and the minimum passing grade is 5.