FIŞA DISCIPLINEI

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	e disc	eipline	Mc	dule Theory			
2.2 Course coordinator Assoc.Prof.PhD. Simion Breaz							
2.3 Seminar coordinator				Assoc.Prof.PhD. S	Simio	n Breaz	
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

5. Total estimated time (nours/somest					
3.1 Hours per week	2	Of which: 3.2	2	3.3	1
		course		seminar/laborator	
				у	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laborator	
				у	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					14
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					
Evaluations					23
Other activities:					0

3.7 Total individual study hours	75
3.8 Total hours per semester	150
3 9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
.2. for the seminar /lab activities	

6. Specific competencies acquired

Profes sional compe tencie s	 Adapting mathematical content with different levels of difficulty in specific situations; Making connections between results and specific notions of specialized branches of mathematics (algebra, calculus, etc.). Acquisition of skills about preparing a presentation.
Trans versal compe tencie s	Handling various mathematical objects in theoretical or practical situations; Acquiring practical skills related to self-study; Ability to apply specific mathematical results in other areas of theoretical or practical.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The students will be able to manage notions, results, and techniques related to Module Theory over non-commutative
5.55 · F	rings
	The stidents will:
2 Specific objective of the	 understand notions as direct sum, direct product, tensor
discipline	product;
	contruct new objects;
	use the injective hull and the projective cover;
	 use various classes of submodules/supromodules.

8. Content

8.1 Course	Teaching methods	Remarks
1. Basic notions: rings, modules, submodules, homomorphisms	Exposure: description, explanation, examples, discussion of case studies	
2. Direct sum; Direct summand	Exposure: description, explanation, examples, discussion of case studies	
3. Direct product	Exposure: description, explanation, examples, discussion of case studies	
4. Free and projective modules	Exposure: description, explanation, examples, discussion of case studies	
5. Injective modules	Exposure: description, explanation, examples,	

	discussion of case studies
6. Semi-simple rings and modules	Exposure: description, explanation, examples, discussion of case studies
7. Finiteness conditions	Exposure: description, explanation, examples, discussion of case studies
8. Noetherian/artinian modules	Exposure: description, explanation, examples, discussion of case studies
9. Tensor product.	Exposure: description, explanation, examples, discussion of case studies
10. Flat modules	Exposure: description, explanation, examples, discussion of case studies
11. Pure submodules	Exposure: description, explanation, examples, discussion of case studies
12. Modules over PID	Exposure: description, explanation, examples, discussion of case studies
13. Rings and modules of fractions	Exposure: description, explanation, examples, discussion of case studies
14. Nonsingular rings and modules References	Exposure: description, explanation, examples, discussion of case studies

References

- 1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules, Graduate Texts in Math. Vol. 13, Springer-Verlag, 1992.
- 2.Lam, T.Y.: Lectures On Modules and Rings, Graduate Texts in Math. Vol. 189, Springer-Verlag,

1999.

3.Lam, T.Y.: A First Course in Noncommutative rings, Graduate Texts in Math. Vol. 131, Springer-Verlag, 1991.

Verlag, 1991.	36 (1 1 1	
8.2 Seminar / laborator	Metode de predare	Observații
Basic notions: rings, modules, submodules, homomorphisms	Exposure: description, explanation, examples, discussion of case studies	
2. Direct sum; Direct summand	Exposure: description, explanation, examples, discussion of case studies	
3. Direct product	Exposure: description, explanation, examples, discussion of case studies	
4. Free and projective modules	Exposure: description, explanation, examples, discussion of case studies	
5. Injective modules	Exposure: description, explanation, examples, discussion of case studies	
6. Semi-simple rings and modules	Exposure: description, explanation, examples, discussion of case studies	
7. Finiteness conditions	Exposure: description, explanation, examples, discussion of case studies	
8. Noetherian/artinian modules	Exposure: description, explanation, examples, discussion of case studies	
9. Tensor product.	Exposure: description, explanation, examples, discussion of case studies	
10. Flat modules	Exposure: description, explanation, examples, discussion of case studies	

11. Pure submodules	Exposure: description, explanation, examples, discussion of case studies
12. Modules over PID	Exposure: description, explanation, examples, discussion of case studies
13. Rings and modules of fractions	Exposure: description, explanation, examples, discussion of case studies
14. Nonsingular rings and modules	Exposure: description, explanation, examples, discussion of case studies

- 1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules, Graduate Texts in Math. Vol. 13, Springer-Verlag, 1992.
- 2. Lam, T.Y.: Exercices in Classical Ring Theory, Problem Books in Mathematics, Springer-Verlag, 1995.
- 3. Lam, T.Y.: Exercices in Modules and Rings, Problem Books in Mathematics, Springer-Verlag, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course respects the standards used by many universities;

The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Theoretic notions and results (with proofs),	Test+ Final exam	50%
	Definitions, statements, examples	Final exam	25%
10.5 Seminar/laborator	Solving specific exercises and problems	Final exam	25%

10.6 Minimum performance standards

• At the final exam the grade should be at least 5

Date	Signature of course coordinator	Signature of seminar coordinator
Date of approx	oval	Signature of the head of department