SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babes-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Software Engineering			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Computational Models for Embedded Systems								
2.2 Course coordinator PhD Lecturer Andreea Vescan								
2.3 Seminar coordinator PhD Lecturer Andreea Vescan								
2.4. Year of	2	2.5	4	2.6. Type ofE2.7 Type ofcompulsory				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course note	s		24
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays					48
Tutorship					20
Evaluations					24
Other activities:					0
3.7 Total individual study hours 152					
3.8 Total hours per semester		200			
3.9 Number of ECTS credits		8			

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies	 Understanding and working with basic concepts in software engineering; Capability of analysis and synthesis; Modeling and solving real-life problems;
Transversal competencies	 Ability to understand and approach problems of modeling nature from other sciences Good programming skills in high-level languages; Abilities to develop and maintain software systems; Ability to analyze, synthesize and model fenomena and processes from various fields using adequate mathematical, statistical, computational and computer science methods.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Modeling is an essential technique and serves various purposes, so it is important to understand its fundamental concepts. These concepts relate basically to the way a modeling paradigm allows one to deal with the great properties of system: time, computation, data and communication.
	In general, when modeling a system, we want to be able to formulate particular questions on it: Will a system ever enter a particular state?
	Will it always be able to avoid a particular dangerous state?
	Will it always eventually reach some desired state? The classical theory of computation focuses on the function that a program computes. To understand embedded computation, we need to focus on the reactive nature of the interaction of a component with its environement and requirements concerning safety, timeliness, stability, and performance.
	• The main objectives of this cours are to provide an understanding of the fundamentals concepts of software modeling, more precise for embedded computation; to develop skills in modeling and to describe and verify safety and liveness properties of the system being modeled.
7.2 Specific objective of the discipline	• Students will learn the models of computations for embedded systems.
	• Students will know to specify, design and verify an embedded system
	• Students will know how to model a system and specify restrictions on functionalities.

8. Content	_	
8.1 Course	Teaching methods	Remarks
1. Introduction. Model: Why?what? how? Types	Presentation,	
of systems.	Conversation,	
	Didactic	

	dom on otrasti on
	demonstration,
	Problematizations
2. Requirements and Safety Requirements. Model	Presentation,
checking.	Conversation,
	Didactic
	demonstration,
	Problematizations
3. Synchronous models.	Presentation,
	Conversation,
	Didactic
	demonstration,
	Problematizations
4. Finite State Machines	Presentation,
5. Finite State Machines (cont.)	Conversation,
	Didactic
	demonstration,
	Problematizations
6. Petri Nets	Presentation,
7. Petri Nets (cont.)	Conversation,
	Didactic
	demonstration,
	Problematizations
8. Asynchronous models	Presentation,
	Conversation,
	Didactic
	demonstration,
	Problematizations
9. Dynamical systems	Presentation,
	Conversation,
	Didactic
	demonstration,
	Problematizations
10. Timed Models	Presentation,
	Conversation,
	Didactic
	demonstration,
	Problematizations
11. Hybrid systems	Presentation,
	Conversation,
	Didactic
	demonstration,
	Problematizations
12. Reserved subject	

Bibliography

[1] C. Baier, J.-P. Katoen, Principles of Model Checking, ISBN 978-0-262-02649-9, 2008

- [2] M. Ben-Ari, Principles of the Spin Model Checker, ISBN 978-1-84628-769-5
- [3] Taylor Booth (1967) Sequential Machines and Automata Theory, John Wiley and Sons, New York. Library of Congress Catalog Card Number: 67-25924.
- [4] D. Harel, "Statecharts: A Visual Formalism for Complex Systems", Sci. Comput. Programming 8 (1987), 231-274
- [5] Petri, CA (1966) Communication with automata. DTIC Research Report AD0630125
- [6] Hoare, CAR (2004) (1985), Communicating Sequential Processes, Prentice Hall International Optional references
- Internet resources and conferences

8.2 Seminar / laboratory	Teaching methods	Remarks
Lab 1 (weeks 1-2)	Presentation,	
Choose project theme.	Conversation,	
	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 2 (theme 1, weeks 3-4)	Presentation,	
Specifying safety and liveness requirements.	Conversation,	
Model checking.	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 3 (theme 2, weeks 5-6)	Presentation,	
Using Finite State Machines to model an	Conversation,	
embedded system.	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 4 (theme 3, weeks 7-8)	Presentation,	
Using PetriNets to model an embedded system.	Conversation,	
	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 5 (theme 2,3, weeks 9-10)	Presentation,	
Using Finite State Machines and PetriNets to	Conversation,	
model an embedded system.	Problematizations,	
	Discovery, Individual	
	study, Exercises	
Lab 6 (weeks 11-12)	Presentation	
Project presentation and documentation delivery.		
Bibliography		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to model, specify, design and test embedded systems.
- Students will learn various computational models for embedded systems.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
Type of activity	10.1 Evaluation citteria	10.2 Evaluation methods	
			grade (%)
10.4 Course	GF=GradeFinal = graded	Written examination	60
	paper at the final exam	Passing the final exam is	
		conditioned by the grade GF	
		being at least 5.	
	GP=GradeProjects =	Specification, design and	40
	documentations and	analysis, presentation of the	

pro	ojects	project		
10.6 Minimum performance standards				
Students will know various computational models for embedded systems.				
At least grade 5 (from a scale of 1 to 10) at written exam and project work.				

Date	Signature of course coordinator	Signature of seminar coordinator
04.30.2013	Lect. PhD. Andreea Vescan	Lect.PhD. Andreea Vescan
Date of approval	Signature of the head of department	

.....

Prof. PhD. Bazil Parv