SYLLABUS

1. Information regarding the programme				
1.1 Higher education	Babes-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Computer Science			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Software Component Models							
2.2 Course coor	2.2 Course coordinator PhD Lecturer Andreea Vescan						
2.3 Seminar coo	2.3 Seminar coordinator PhD Lecturer Andreea Vescan						
2.4. Year of	3	2.5	5	2.6. Type of	С	2.7 Type of	optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	5		24
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					24
Tutorship					
Evaluations					
Other activities:					0
3.7 Total individual study hours		114			
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

1 1	, ,
4.1. curriculum	•
4.2. competencies	•

6

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Professional competencies	Knowledge, uAbility to wor	nderstanding and use of basic concepts of theoretical Computer Science k independently in order to solve problems in defined professional contexts.
Transversal competencies	• Improved pro	gramming abilities: debugging and correcting compilers errors

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Instead of building monolithic systems from scratch, Component-based
discipline	 Software Development (CBD) aims to construct systems by assembling ready-made components, and thereby reduce production cost and time-to-market, whilst increasing software reuse. The cornerstone of a CBD approach is the underlying component model, which defines what components are and how they can be composed. Current component models do not yet achieve the aforementioned objectives of CBD. In this course, we will study current component models and how they measure up to the goals of CBD. The aims of this course are:
	 To introduce the basic concepts and the goals of the CBD paradigm To provide an overview of current component models To provide an in-depth exposition of key representative component models
7.2 Specific objective of the discipline	• Students will learn the current component models.
	• Students will know similarities and differences between component models.
	• Students will know how to model a component-based system using a specific component model.

8. Con	8. Content						
8.1 Co	urse	Teaching methods	Remarks				
1.	Basic concepts (components, composition,	Presentation, Didactic					
	component models)	demonstration,					
		Problematizations					
2.	The CBD process (component life cycle,	Presentation, Didactic					
	system life cycle)	demonstration,					
		Problematizations					
3.	The Semantics of Software Components	Presentation, Didactic					
		demonstration,					
		Problematizations					
4.	The Syntax of Software Components	Presentation, Didactic					

	demonstration, Broblematizations
5 The Composition of Software Components	Presentation Didactic
5.1. An Idealized Component Life Cycle	demonstration,
5.2. Composition in the Design Phase	Problematizations
6. Composition in the Deployment Phase	Presentation, Didactic
1 1 2	demonstration,
	Problematizations
7. Software Component Models	Presentation, Didactic
7.1. Category 1: Design without Repository -	demonstration,
This category includes all simple Acme-	Problematizations
like ADLs, UML2.0,	
PECOS, and Fractal.	
7.2. Category 2: Design with Deposit-Only	
Repository - This category includes EJB,	
COM, .NET, CCM, and Web Services. The	
representative example is EJB.	
7.3. Category 3: Deployment with Repository -	
This category contains only JavaBeans.	
7.4. Category 4. Design with Repository - This	
Kohr	
8 A taxonomy	Presentation, Didactic
8.1. Categories Based on Component Semantics	demonstration.
Based on semantics, current component models can be	Problematizations
grouped into three categories: 1) component models in	
which components are classes, 2) models in which	
components are objects, and 3) those in which	
components are architectural units	
1.1. Categories Based on Component Syntax	
Based on component syntax, current models fall into	
three categories: 1) models in which components are	
defined by	
object-oriented programming languages, 2) those in	
which an IDL is used and in which components can be	
defined in	
programming languages with mappings from the IDL,	
ADLs	
1 2 A Taxonomy Based on Composition	
Ribliography	
[1] KK. Lau, Z. Wang, Software Component Models, I	EEE Trans. on Software Engineering, V 33, n. 10.
pp. 709-724, 2007.	,, _,
[2] Szyperski, C.: Component Software. Beyond Object-	Oriented Programming, Addison-Wesley (1st ed.
1998, 2nd ed. 2002).	
[3] Crnkovic, I., Larsson, M., Building Reliable Compon	nent-Based Software Systems, Artech House
Publisher, ISBN 1-58053-327-2, 2002	

Optional references Internet resources and conferences

8.2 Seminar / laboratory	Teaching methods	Remarks

Theme 1 (lab 1-2, weeks 1-4)	Presentation,
The first two labs are dedicated to surveying information	Conversation,
sources available on Internet and Intranet. In the lab 2	Problematizations,
the student must communicate the project title. Live	Discovery, Other
demos are scheduled in the last week.	methods – individual
	study, exercises
Theme 2 (lab 3-4, weeks 5-8)	Presentation,
Project design –choose a component model	Conversation,
	Problematizations,
	Discovery, Other
	methods – individual
	study, exercises
Theme 3 (lab 5-6, weeks 9-12)	Presentation,
Project implementation and presentation.	Conversation,
	Problematizations,
	Discovery, Other
	methods – individual
	study, exercises
Bibliography	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know the current existing component models. •
- Students will know how to model a component-based system using a specific component model. •

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	GF=GradeFinal = graded		40			
	paper at the final exam,					
	during lecture 12					
	Passing the final exam is					
	conditioned by the					
	grade GF being at least					
	5.					
10.5 Seminar/lab activities	GA=Grade Activity = lab	attendance + activity in class	20			
	activity					
	GP=GradeProjects =		40			
	documentations, programs					
	and projects developed					
10.6 Minimum performance standards						
Students will know the current existing component models.						
At least grade 5 (from a scale of 1 to 10) at written exam and laboratory work and project work.						

Date	Signature of course coordinator	Signature of seminar coordinator
04.30.2013	Lect. PhD. Andreea Vescan	Lect. PhD. Andreea Vescan

Date of approval

Signature of the head of department

.....

Prof. PhD. Bazil Parv