SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Advanced Evolutionary Computing in Solving Complex Problems							
2.2 Course coor	2.2 Course coordinator Prof.PhD. Dumitru Dumitrescu						
2.3 Seminar co	2.3 Seminar coordinator Prof.PhD. Dumitru Dumitrescu						
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

			/			
3.1 Hours per week	3	Of which:	3.2	2	3.3	1 sem
		course			seminar/laborator	
					у	
3.4 Total hours in the curriculum	42	Of which:	3.5	28	3.6	14
		course			seminar/laborator	
					у	
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes					20	
Additional documentation (in libraries, on electronic platforms, field documentation)					10	
Preparation for seminars/labs, homework, papers, portfolios and essays					23	
Tutorship					7	
Evaluations					20	
Other activities:						-
3.7 Total individual study hours		80				
3 8 Total hours per semester		150				

5.8 Total nouls	per semester	130
3.9 Number of 1	ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	⑦ Average programming skills

5. Conditions (if necessary)

5.1. for the course	

6. Specific competencies acquired

Professional competencies	⁽²⁾ Knowledge, understanding and use of basic concepts of EMCO
Transversal competencies	 Ability to apply multicriteria optimization problems to different real life problems Ability to model phenomena using multicriteria optimization problem

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	complex problems;
discipline	skills for addressing complex real-world problems;
	the background for advanced studies and research in the field;
7.2 Specific objective of the	
discipline	

8. Content

ð. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction to Numerical optimization.	Exposure: description, explanation, examples, discussion of case studies	
2. Evolutionary numerical optimization. Problem representation. Fitness assignment.	Exposure: description, explanation, examples, discussion of case studies	
 Evolutionary dynamical optimization. Noisy fitness function. Dynamic environments. Dynamic fitness function (moving peaks benchmark). 	Exposure: description, explanation, examples, debate, dialogue	
 Evolutionary dynamical optimization. Generating diversity. Memory based approaches. Multipopulation approaches. Hybrid approaches. 	Exposure: description, explanation, examples, discussion of case studies	
 Evolutionary multicriteria optimization (EMOO). Basic concepts. 	Exposure: description, explanation, examples, proofs	
 EMOO – Standard techniques (VEGA, MOGA, NPGA, PESA) 	Exposure: description, explanation, examples, proofs, debate, dialogue	
7. EMOO – SPEA, SPEA2 algorithms	Exposure: description, explanation, examples,	

	discussion of case studies			
8. EMOO – NSGA, NSGA-II techniques	Exposure: description,			
	explanation, examples			
9. EMOO – GHEA, Roaming, PSO and DE	Exposure: description,			
approaches	explanation, examples,			
	discussion of case studies			
10. EMOO – performance measures	Exposure: description,			
	explanation, examples,			
	debate			
11. Combinatorial optimization – problem statement	Exposure: description,			
and basic approaches	explanation, examples,			
	discussion of case studies			
12. NP-complete problems and metaheuristics	Exposure: description,			
	explanation, examples,			
	discussion of case studies			
13. Evolutionary approaches for addressing NP-	Exposure: description,			
hard problems.	explanation, examples,			
	discussion of case studies			
14. Evolutionary network optimization – Network	Exposure: description,			
models. Dynamical network	examples, discussion of			
optimization/search.	case studies, live demo			
optimization searen.				
Bibliography				
DUMITRESCU, D., B Lazzerini, Evolutionary Computation, CRC Press, New York, Boca Raton, 2000				
DUMITRESCU,D.,B Lazzerini,Fuzzy Sets and treir Application in Training and Clustering, CRC Press, New York, Boca Raton, 2000				
DUMITRESCU D. Principiila Inteligentai artificiala, Editura Albestra, Chui 2000				

DUMITRESCU, D., Principiile Inteligentei artificiale, Editura Albastra, Cluj, 2000.

DUMITRESCU, D., Principiile teoriei clasificarii, Editura Academiei, Bucuresti, 2000.

DUMITRESCU, D., Algoritmi genetici si strategii evolutive. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj, 2000.

DUMITRESCU, D., Inteligenta artificiala, Univ. "Babes-Bolyai", 1995.

GOLDBERG, D. E., Genetic Algorithm. Addison-Wesley, Reading, 1989.

MICHALEWICZ, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 1992.

8.2 Seminar	Teaching methods	Remarks
1. Evolutionary numerical optimization. Problem	Explation, dialogue, case	The seminar is
representation. Fitness assignment problems	studies	structured as 2 hours
		classes every second
		week
2. Evolutionary dynamical optimization.	Dialogue, debate, case	
Generating diversity. Memory based	studies, examples, proofs	
approaches. Multipopulation approaches.		
Hybrid approaches problems		
3. Evolutionary multicriteria optimization	Dialogue, debate, case	
(EMOO). Basic conceptsproblems	studies, examples, proofs	
4. EMOO standard techniques - problems	Dialogue, debate, case	
	studies, examples	
5. Combinatorial optimization – problem statement	Dialogue, debate, case	

and basic approaches -problems	studies, examples
6. Evolutionary approaches for addressing NP-	Dialogue, debate, case
hard problemsproblems	studies, examples
7. Evolutionary network optimization – Network	Dialogue, debate, case
models. Dynamical network	studies, examples
optimization/search -problems	

Bibliography

DUMITRESCU, D., B Lazzerini, Evolutionary Computation, CRC Press, New York, Boca Raton, 2000

DUMITRESCU, D., B Lazzerini, Fuzzy Sets and treir Application in Training and Clustering, CRC Press, New York, Boca Raton, 2000

DUMITRESCU, D., Principiile Inteligentei artificiale, Editura Albastra, Cluj, 2000.

DUMITRESCU, D., Principiile teoriei clasificarii, Editura Academiei, Bucuresti, 2000.

DUMITRESCU, D., Algoritmi genetici si strategii evolutive. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj,2000.

DUMITRESCU, D., Inteligenta artificiala, Univ. "Babes-Bolyai", 1995.

GOLDBERG, D. E., Genetic Algorithm. Addison-Wesley, Reading, 1989.

MICHALEWICZ, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 1992.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

⁽²⁾ The course exists in the studying program of all major universities in Romania and abroad;

⁽²⁾ The content of the course is considered important in the MCO state of the art.

10. Evaluation			10.2.01
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	50%
10.5 Seminar/lab activities	 be able to implement course concepts and algorithms be able to make a practical project during the semester 	-Practical project -documentation -portofolio -continous observations	50%
10.6 Minimum perform	nance standards	-	·
At least grade 5 ((from a scale of 1 to 10) at both writte	en exam and laboratory work.	

Date

Signature of course coordinator

Signature of seminar coordinator

D. Amutrisca

Prof PhD Dumitru Dumitrescu

Date of approval

.....

Signature of the head of department

.....